Stability analysis of decentralized event-triggered H∞ control using the quadratic convex approach

2016 ◽  
Vol 40 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Fuqiang Li ◽  
Jingqi Fu ◽  
Dajun Du

This paper studies the stability analysis of the decentralized event-triggered H∞ control with communication delays using the quadratic convex approach. Unlike the decentralized event-triggered mechanism (ETM), which only uses the information from the sensor itself by considering the communication topology of the wireless sensor network, a more general decentralized ETM is first proposed by using the information from both the sensor itself and its neighbours. Then, a time-delay system model with parameters of the decentralized ETM, directed graph information, communication delays and external disturbances is presented. In addition, novel delay-dependent asymptotic stability criteria are derived by using the augmented Lyapunov–Krasovski functional (LKF), which contains the cross terms of variables and quadratic terms multiplied by a higher degree scalar function. Unlike some prior results using the first-order convex combination property, our derivation applies the quadratic convex approach with the augmented LKF, which results in less conservatism. Moreover, sufficient conditions for the co-design of the controller and the decentralized ETM are obtained. Finally, numerical examples confirm the effectiveness of the proposed method.

2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


Author(s):  
K. Ramakrishnan ◽  
G. Ray

In this paper, we consider the problem of delay-dependent stability of a class of Lur’e systems of neutral type with time-varying delays and sector-bounded nonlinearity using Lyapunov–Krasovskii (LK) functional approach. By using a candidate LK functional in the stability analysis, a less conservative absolute stability criterion is derived in terms of linear matrix inequalities (LMIs). In addition to the LK functional, conservatism in the proposed stability analysis is further reduced by imposing tighter bounding on the time-derivative of the functional without neglecting any useful terms using minimal number of slack matrix variables. The proposed analysis, subsequently, yields a stability criterion in convex LMI framework, and is solved nonconservatively at boundary conditions using standard LMI solvers. The effectiveness of the proposed criterion is demonstrated through a standard numerical example and Chua’s circuit.


Author(s):  
Rama K. Yedavalli

This paper presents new insight into the robust stability analysis of families of matrices described by convex combinations of Hurwitz stable 'vertex' matrices. Significant new insight is provided that removes many misconceptions that currently prevail in this problem formulation. In this connection, careful distinction is made between 'Structured' and 'Unstructured' convex combinations of matrices. The convex combinations arising from an uncertain matrix with interval parameters is labeled as 'structured' convex combinations whereas the convex combinations of 'user specified' Hurwitz stable vertex matrices are labeled as 'unstructured' convex combinations. It is clearly shown that the convex combination property in matrix case is dictated more by the nature of the 'vertex' matrices rather than by simply assigning values to the coefficients of the combination. From this analysis, it is clearly established that 'structured' and 'unstructured' convex combinations are two entirely different problem formulations and one is not a special case of the other as it is currently believed. Thus even the solution algorithms for checking the stability of these matrix families are different. After establishing this distinction, this paper then concentrates on the 'unstructured' case and provides a 'vertex solution' to a specific three vertex convex combination problem. The algorithm is illustrated with several examples. This contribution suggests that there is still considerable research needed to appreciably enhance the knowledge base in the important area of robust stability analysis of matrix families which arise in various applications.


2013 ◽  
Vol 61 (3) ◽  
pp. 547-555 ◽  
Author(s):  
J. Klamka ◽  
A. Czornik ◽  
M. Niezabitowski

Abstract The study of properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. This paper aims to briefly survey recent results on stability and controllability of switched linear systems. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After that, we review the controllability results.


2011 ◽  
Vol 219-220 ◽  
pp. 508-512
Author(s):  
Yong Liang Gao ◽  
Xiao Wu Mu

This paper focuses on the stability analysis and invariant set stability theorems for nonlinear impulsive systems. A set of Lyapunov-based sufficient conditions are established for these convergent properties. These results do not require the Lyapunov function to be positive definite. Inequalities relating the righthandside of the differential equation and the Lyapunov function derivative are involved for these results. These inequalities make it possible to deduce properties of the functions and thus leads to sufficient conditions for convergence and stability.


2014 ◽  
Vol 852 ◽  
pp. 675-680
Author(s):  
Gulizhati Hailati ◽  
Jie Wang ◽  
Ting Yin

The stability of generator excitations and SVCs in power system with wide-area time-delay coordinating Control is investigated in this paper. A nonlinear time-delay Hamiltonian model of power system with SVCs is constructed and the Hamiltonian functional method is used to derive a delay-dependent steady stability criterion in term of matrix inequalities by constructing suitable Lyapunov-Krasovskii functional. Then the wide-area damping controller (WADC) and wide-area damping supplementary controller (WDSC) for the power system is designed based on the delay-dependent sufficient conditions. Four-generator eleven-bus power system is used to illustrate delay effect on inter-area mode damping. The performance of the proposed controller is verified by the results of simulation in time-domain, and it is proved that the method proposed in this paper is effective.


2017 ◽  
Vol 24 (20) ◽  
pp. 4921-4930 ◽  
Author(s):  
Nasrollah Azam Baleghi ◽  
Mohammad Hossein Shafiei

This paper studies the delay-dependent stability conditions for time-delay discrete-time switched systems. In the considered switched system, there are uncertain terms in each subsystem due to affine parametric uncertainties. Additionally, each subsystem has a time-varying state delay which adds more complexity to the stability analysis. Based on the Lyapunov functional approach, the sufficient conditions are extracted to determine the admissible upper bound of the time-varying delay for guaranteed stability. Furthermore, a class of switching signals is identified to guarantee the exponential stability of the uncertain time-delay switched system. The main advantage of the suggested switching signals is its independency to the uncertainties. Furthermore, these signals are only constrained by a determined average dwell time (may be chosen arbitrarily). Finally, a numerical example is provided to demonstrate the efficiency of the proposed method and also the reduction of conservatism in finding the admissible upper bound of time-delay in comparison with other stability analysis approaches.


Sign in / Sign up

Export Citation Format

Share Document