Soft sensor for the moisture content of crude oil based on multi-kernel Gaussian process regression optimized by an adaptive variable population fruit fly optimization algorithm

2019 ◽  
Vol 42 (4) ◽  
pp. 770-785 ◽  
Author(s):  
Kun Li ◽  
Wensu Xu ◽  
Ying Han ◽  
Fawei Ge ◽  
Yi’an Wang

In the practical oilfield production, it has great significance to realize timely and accurate measurement of the moisture content of crude oil. However, there are some drawbacks in the traditional measurement methods, such as: non-real time, high cost, labor-consume, vulnerability to environmental impacts, and so on. In order to solve these problems, a soft sensor model based on multi-kernel Gaussian process regression optimized by an adaptive variable population fruit fly optimization algorithm (APFOA-MKGPR) is presented in this paper. A multiple kernels-based Gaussian process regression method is utilized to deal with the practical production process characterised by multiple operating phases, noises, strong nonlinearity and dynamic. In the multi-kernel function, many parameters (five hyper-parameters in the multi-kernel function and three weights of each kernel function) need to be accurately given, which is difficult to be effectively optimized by the maximum likelihood estimation. So, a swarm intelligence-based adaptive variable population fruit fly optimization algorithm (APFOA) is proposed to train the best model parameters. A novel adaptive variable population mechanism is developed to adaptively adjust the population size and the random flight distance during the iterations, which can realize a combination of the global searching and the local searching for the optimal solutions. The proposed method is verified by four benchmark functions and the actual production data of one oil well, and experimental results show the effectiveness for accurate prediction of the moisture content of crude oil.

2014 ◽  
Vol 8 (1) ◽  
pp. 685-689
Author(s):  
Chunqing Ye ◽  
Changyun Miao ◽  
Xianguo Li ◽  
Yanli Yang

In this research, we studied the fault recognition algorithm of steel cord conveyor belt, and obtained the wire ropes image by adopting the detection system of steel cord conveyor belt, so that the fault recognition algorithm of steel cord conveyor belt was proposed based on Fruit fly optimization algorithm. As we know that the fruit fly optimization algorithm is used for fault detection of the processing steel cord conveyor belt image and for obtaining the fault image. In the MATLAB environment, the algorithm process was designed and verified in terms of the effectiveness and accuracy. The experimental results show that with fast speed and high accuracy in detecting the fault image of steel cord conveyor belt rapidly and accurately, and in classifying scratch from fracture the proposed algorithm is suitable for the fault recognition of steel cord conveyor belt automatically.


Sign in / Sign up

Export Citation Format

Share Document