Stable control of the high-speeding magnetically suspended rotor based on extended state observer and two-degree freedom internal model control for control moment gyros with serious moving-gimbal effects

2020 ◽  
Vol 42 (14) ◽  
pp. 2733-2743
Author(s):  
Jiqiang Tang ◽  
Tongkun Wei ◽  
Qichao Lv ◽  
Xu Cui

For a magnetically suspended control moment gyro (MSCMG), which is an ideal attitude actuator for its large outputting control moment and fast response, the moving-gimbal effects due to the coupling between the moving gimbal and high-speeding rotor will make the magnetically suspended rotor (MSR) unstable. To improve control precision, both the dynamic model of MSR and the feedback linearization control are done to decouple tilting motion, and poles of the system are reconfigured to reduce control error. To suppress the varying disturbance moments caused by moving-gimbal effects, an extended state observer (ESO) is originally designed to estimate and compensate them timely and accurately. To improve system robustness, a two-degree freedom internal model control (2-DOF IMC) is researched to suppress model error. Compared with existing proportional integral derivative (PID) control method, simulations done on a single gimbal MSCMG with 200 N.m.s angular momentum indicated that this presented control method with ESO and 2-DOF IMC can suppress the moving-gimbal effects more effectively and make the rotor suspension more stable.

Author(s):  
Rachid Mansouri ◽  
Maamar Bettayeb ◽  
Ubaid M Al-Saggaf ◽  
Abdulrahman U Alsaggaf ◽  
Muhammad Moinuddin

In this paper, based on the extended state observer (ESO) and on a fractional order controller (FOC), composed of an integer order PID cascaded with a fractional order filter (FOF), a new control scheme for an n th order integer plant is proposed. The ESO is used to estimate and cancel the unknown internal dynamics and the external disturbance. Afterwards, an FOC is designed to resolve the set-point tracking problem. An analytical and systematic method is proposed to design the FOC. This method is based on the Internal Model Control (IMC) and the Bode’s Ideal Transfer Function (BITF). Therefore, the proposed control structure improves the robustness and performance of the traditional linear active disturbance rejection control (LADRC), especially for the open-loop gain variation. In addition, since the system be controlled is an n th order, a general form of the BITF is also proposed. Numerical simulations on a nonlinear model and experimental results on a cart-pendulum system design illustrate the effectiveness of the suggested ESO-PID-FOF scheme for the disturbance rejection, the set-point tracking and robustness. A comparison with the results obtained using the standard LADRC is also presented.


Author(s):  
Sushant N Pawar ◽  
Rajan H Chile ◽  
Balasaheb M Patre

This paper describes a predictive extended state observer-based robust control for uncertain process control applications. The technique discussed in the article uses the extended state observer (ESO) that can estimate the dynamics of the system as well as total disturbance encountered in the system. The disturbances, parametric uncertainties associated with the processes are treated as an extended state variable to be estimated in real-time using ESO. With the implementation of a predictive algorithm with an ESO, the proposed control structure extends its applicability to time-delayed higher-order processes. The proposed control technique utilizes the simple first-order modified predictive ESO even in the case of higher-order processes. The novel predictive ESO is able to obtain a delay less estimation of total disturbance as compared with existing normal ESO. Also, novel predictive ESO maintains its stability margin in presence of time delay as well provides better response as compared with normal ESO. Numerical simulations show that the proposed scheme provides a significant improvement in transient response as compared with internal model control-based proportional-integral-derivative (IMC-PID) control. The proposed scheme requires less knowledge of the process as compared with the IMC-PID structure. The implementation of the proposed control is tested on a real-life single tank level control system. Because of its merit, the suggested technique can be used as automatic for online tuning, as it is less reliant on the process model.


2011 ◽  
Vol 311-313 ◽  
pp. 2230-2234
Author(s):  
Gui Li Yuan

The controlled object of boiler combustion system in power plant is a complex system with nonlinear, timing change, large lagging and multi-variable coupling, and does not have precise mathematical model, so it is difficult to obtain the satisfactory control effect adopting the traditional PID control. Advanced control strategies are adopted to improve the performance of the boiler combustion control system, and it has been more and more the concern of the majority of electricity production enterprises. Internal model control is a very practical control method, and its main characteristic is simple structure, intuitive design and few online adjustment parameter, and easy adjustment policy. And it is especially particularly significant to improve the control effect of large delay system. The internal model control system is used in power station boiler combustion system, it can effectively solve the large delay, large inertia and other shortcomings, but there is the contradiction between the fast response and robustness in internal model control system. The fuzzy immune control has advantages, such as, fast response, fast stable and good robust, etc. The fuzzy immune control is introduced into internal model control system, this paper designs fuzzy immune internal model controller, which integrates speed and robustness of the internal model control. The fuzzy immune internal model control is applied to combustion control system, and we compare it with ordinary internal model control method. The simulation result shows that fuzzy immune internal model control can greatly improve the characteristics of the control system with time delay. And this effectiveness of the fuzzy immune internal model controller has been verified.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Yu Cao ◽  
Zhongzheng Fu ◽  
Mengshi Zhang ◽  
Jian Huang

This paper presents a tracking control method for pneumatic muscle actuators (PMAs). Considering that the PMA platform only feedbacks position, and the velocity and disturbances cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating the system states and disturbances by using measurable variables. Integrated with the ESO, a super twisting controller (STC) is design based on estimated states to realize the high-precision tracking. According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation and experimental studies are conducted, and the results show the convergence of the ESO and the effectiveness of the proposed method.


Author(s):  
Wenming Nie ◽  
Huifeng Li ◽  
Ran Zhang ◽  
Bo Liu

The ascent trajectory tracking problem of a launch vehicle is investigated in this paper. To improve the conventional trajectory linearization method which usually omits the linearization errors, the extended state observer (ESO) is employed in this paper to timely estimate the total disturbance which consists of the external disturbances and the modeling uncertainties resulting from linearization error. It is proven that the proposed trajectory tracking controller can guarantee the desired performance despite both external disturbances and the modeling uncertainties. Moreover, compared with the conventional linearization control method, the proposed controller is shown to have much better performance of uncertainty rejection. Finally, the feasibility and performance of this controller are illuminated via simulation studies.


Sign in / Sign up

Export Citation Format

Share Document