Finite-time boundedness of two-dimensional positive continuous-discrete systems in Roesser model

Author(s):  
Shipei Huang ◽  
Zhengbing Yan ◽  
Zhengjiang Zhang ◽  
Guoqiang Zeng

This paper is concerned with the finite-time boundedness of two dimensional (2-D) positive continuous-discrete systems in Roesser model. By constructing an appropriate co-positive type Lyapunov function, sufficient conditions of finite-time stability for the nominal 2-D positive continuous-discrete system are established. Sufficient conditions of finite-time boundedness for the addressed system with external disturbances are also proposed. The proposed results are then extended to uncertain cases, where the interval and polytopic uncertainties are considered respectively. Finally, three examples are provided to illustrate the effectiveness of the proposed results.

2019 ◽  
Vol 41 (12) ◽  
pp. 3364-3371 ◽  
Author(s):  
Jinxia Liang ◽  
Baowei Wu ◽  
Lili Liu ◽  
Yue-E Wang ◽  
Changtao Li

Finite-time stability and finite-time boundedness of fractional order switched systems with [Formula: see text] are investigated in this paper. First of all, by employing the average dwell time technique and Lyapunov functional method, some sufficient conditions for finite-time stability and finite-time boundedness of fractional order switched systems are proposed. Furthermore, the state feedback controllers are constructed, and sufficient conditions are given to ensure that the corresponding closed-loop systems are finite-time stable and finite-time bounded. These conditions can be easily obtained in terms of linear matrix inequalities. Finally, two numerical examples are given to show the effectiveness of the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Pan Tinglong ◽  
Yang Kun ◽  
Shen Yanxia ◽  
Gao Zairui ◽  
Ji Zhicheng

Finite-time stability has more practical application values than the classical Lyapunov asymptotic stability over a fixed finite-time interval. The problems of finite-time stability and finite-time boundedness for a class of continuous switched descriptor systems are considered in this paper. Based on the average dwell time approach and the multiple Lyapunov functions technique, the concepts of finite-time stability and boundedness are extended to continuous switched descriptor systems. In addition, sufficient conditions for the existence of state feedback controllers in terms of linear matrix inequalities (LMIs) are obtained with arbitrary switching rules, which guarantee that the switched descriptor system is finite-time stable and finite-time bounded, respectively. Finally, two numerical examples are presented to illustrate the reasonableness and effectiveness of the proposed results.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yingqi Zhang ◽  
Caixia Liu ◽  
Xiaowu Mu

This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Lu Han ◽  
Cunyong Qiu ◽  
Lin Jiang

For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB and H∞ performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under a prespecified state boundary are given. Then the results are extended to solve H∞ finite-time boundedness problem, in which the H∞ controllers are designed to guarantee the finite-time boundedness of affine switched system with H∞ performance. In our investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several numerical examples are given to illustrate the effectiveness of the proposed results.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yeguo Sun ◽  
Jin Xu

The finite-time control problem of a class of networked control systems (NCSs) with time delay is investigated. The main results provided in the paper are sufficient conditions for finite-time stability via state feedback. An augmentation approach is proposed to model NCSs with time delay as linear systems. Based on finite time stability theory, the sufficient conditions for finite-time boundedness and stabilization of the underlying systems are derived via linear matrix inequalities (LMIs) formulation. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed results.


Author(s):  
Mengying Ding ◽  
Yali Dong

This paper is concerned with the problem of robust finite-time boundedness for the discrete-time neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we propose the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural networks with time-varying delay in terms of linear matrix inequalities. Then the sufficient conditions of robust finite-time stability for the discrete-time neural networks with time-varying delays are given. Finally, a numerical example is presented to illustrate the efficiency of proposed methods.


Automatica ◽  
2021 ◽  
Vol 125 ◽  
pp. 109427
Author(s):  
Konstantin Zimenko ◽  
Denis Efimov ◽  
Andrey Polyakov ◽  
Artem Kremlev

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wenhua Gao ◽  
Feiqi Deng ◽  
Ruiqiu Zhang ◽  
Wenhui Liu

This paper studies the problem of finite-timeH∞control for time-delayed Itô stochastic systems with Markovian switching. By using the appropriate Lyapunov-Krasovskii functional and free-weighting matrix techniques, some sufficient conditions of finite-time stability for time-delayed stochastic systems with Markovian switching are proposed. Based on constructing new Lyapunov-Krasovskii functional, the mode-dependent state feedback controller for the finite-timeH∞control is obtained. Simulation results illustrate the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Abdellatif Ben Makhlouf ◽  
Omar Naifar ◽  
Mohamed Ali Hammami ◽  
Bao-wei Wu

In this paper, an extension of some existing results related to finite-time stability (FTS) and finite-time boundedness (FTB) into the conformable fractional derivative is presented. Illustrative example is presented at the end of the paper to show the effectiveness of the proposed result.


Sign in / Sign up

Export Citation Format

Share Document