scholarly journals Explicit model predictive control of permanent magnet synchronous motors based on multi-point linearization

Author(s):  
Qian Guo ◽  
Tianhong Pan ◽  
Jinfeng Liu ◽  
Shan Chen

Permanent magnet synchronous motors (PMSMs) have been broadly applied in servo-drive applications. It is necessary to improve the performance of PMSM. An explicit controller designed for PMSM based on multi-point linearization is proposed to reduce the linearized model error caused by different running status of PMSM. The mathematical model of PMSM system in the synchronous rotating frame and the problem formulation are introduced at first. Then, the preliminaries about explicit model predictive control (MPC) algorithm are presented in this article. Based on this, the multi-point linearization model is created for explicit MPC controller design. Moreover, the block diagram of the proposed method for PMSM system is presented. Finally, the simulation results are provided to demonstrate that the proposed explicit MPC controller based on multi-point linearization achieves better performance than that based on traditional single-point linearization, but requires the same online computation time because of the offline optimization of explicit MPC.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1216
Author(s):  
Adile Akpunar ◽  
Serdar Iplikci

Permanent magnet synchronous motors (PMSMs) have commonly been used in a wide spectrum ranging from industry to home appliances because of their advantages over their conventional counterparts. However, PMSMs are multiple-input multiple-output (MIMO) systems with nonlinear dynamics, which makes their control relatively difficult. In this study, a novel model predictive control mechanism, which is referred to as the Runge-Kutta model predictive control (RKMPC), has been applied for speed control of a commercial permanent magnet synchronous motor. Furthermore, the RKMPC method has been utilized for the adaptation of the speed of the motor under load variations via RKMPC-based online parameter estimation. The superiority of RKMPC is that it can take the constraints on the inputs and outputs of the system into consideration, thereby handling the speed and current control in a single loop. It has been shown in the study that the RKMPC mechanism can also estimate the load changes and unknown load disturbances to eliminate their undesired effects for a desirable control accuracy. The performance of the employed mechanism has been tested on a 0.4 kW PMSM motor experimentally for different conditions and compared to the conventional Proportional Integral (PI) method. The tests have shown the efficiency of RKMPC for PMSMs.


Sign in / Sign up

Export Citation Format

Share Document