scholarly journals Main controlling factors and predictive models for the study of the characteristics of remaining oil distribution during the high water-cut stage in Fuyu oilfield, Songliao Basin, China

2017 ◽  
Vol 36 (1) ◽  
pp. 97-113 ◽  
Author(s):  
Mengsi Sun ◽  
Chiyang Liu ◽  
Congjun Feng ◽  
Ge Zhang
2013 ◽  
Vol 274 ◽  
pp. 675-678
Author(s):  
Cheng Fu ◽  
Bin Huang

The remaining oil distribution is very complex and the difficulty in tapping measures is more and more big when the west block of South-eight area has gone into the ultra-high water cut stage. So the remaining oil distribution in 109 units has been comprehensively studied on the condition that the composite water cut reaches 9.06% by establishing reservoir geologic model and proceeding reservoir numerical simulation according to recent tapping measures and remaining oil analysis experience in the process of adjusting scheme. And combined with some reservoir engineering methods such as: waterflooding characteristic curve and material balance method, obvious effects has been obtained in this research.


2014 ◽  
Vol 628 ◽  
pp. 348-353
Author(s):  
Tao Li ◽  
Zian Li ◽  
Jiang Wang

Sanan oilfield has entered late stage of high water cut development. It urgently needs accurate prediction of remaining oil distribution. But previous studies on 3D structure were far could not meet the requirements of fine reservoir description. This paper applied RMS, a piece of excellent geological modeling software establishing the 3D fine structural model of typical block in Sanan oilfield on the bases of 3D fine seismic structural interpretation data. It included the 28 faults’ model, 11 horizons’ model and the structural model. And then measured and analyzed the faults elements data. Based on abundant geologic data, well data and seismic data of the block, this structural model reproduced the fine seismic interpretation results accurately. It was really fine enough to meet the requirements of the fine reservoir description. This research solved the problem that traditional modeling techniques could not handle complex cutting relationship of faults’ model. It laid a solid foundation for reservoir numerical simulation and remaining oil distribution prediction.


2012 ◽  
Vol 591-593 ◽  
pp. 2555-2558
Author(s):  
Cheng Fu ◽  
Bin Huang

The western South-eight block which is located in the comprehensive tap demonstration area of NO.2 oil production plant, has already gone through three years’ fine development. The production has been stable, the rising amplitude of comprehensive water cut has been small, and the natural decline rate has been controlled effectively. But with the deep development, this block has gone into the late ultra-high water cut stage. To maintain high efficient water flooding development is more and more difficult, therefore fine 3D geological modeling and reservoir numerical simulation work have been carried out. And some practical residual oil saturation diagrams have been put forward finally towards this block, which has provided a reliable basis for the next oilfield development.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Yingjie ◽  
Liang Wenfu ◽  
He Wang ◽  
Li Zian

In this paper, the variation of clay minerals and their influence on reservoir physical properties and residual oil before and after ASP flooding are analyzed. The results show that the total amount of clay minerals in reservoirs decreases after ASP flooding in the ultra-high-water-cut-stage reservoirs of the Naner Zone in the Saertu Oilfield, Songliao Basin. Therein, the illite content reduces, while the content of illite smectite mixed-layer and chlorite increases. The content of kaolinite varies greatly. The content of kaolinite decreases in some samples, while it increases in other samples. The clay minerals block the pore throat after ASP flooding. As a result, the pore structure coefficient and the seepage tortuosity increase, the primary intergranular pore throat shrinks, and the pore–throat coordination number decreases. Nevertheless, the dissolution of clay minerals reduces the pore–throat ratio and increases porosity and permeability. The variation of clay minerals after ASP flooding not only intensifies the reservoir heterogeneity but also affects the formation and distribution of residual oil. The residual oil of the oil–clay mixed adsorption state is a newly formed residual oil type related to clay, which accounts for 44.2% of the total residual oil reserves, so it is the main occurrence form of the oil in reservoirs after ASP flooding. Therefore, the exploitation of this type of residual oil has great significance to enhance the oil recovery in ultra-high-water-cut-stage reservoirs.


2014 ◽  
Vol 675-677 ◽  
pp. 1530-1534
Author(s):  
Biao Li ◽  
Hong Zhang

SZ 36-1 oilfield has entered high water cut stage, and thus research on the distribution of oil is important for tapping potential in oilfield. In this paper, the distribution of residual oil of SZ 36-1 oilfield was discussed by fine reservoir description and dynamic analysis. The saturation of residual oil at faults, “died oil” between two well, the top of positive rhythm sand body and low (no) permeability interlayer is higher than other situations. We point out that infilling adjustment wells, increasing the oil well productivity and structure adjustment of produced liquid are efficient measures to enhance oil recovery for SZ 36-1 oilfield .


Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


Sign in / Sign up

Export Citation Format

Share Document