Effect of image quality on myocardial extracellular volume quantification using cardiac computed tomography: a phantom study

2021 ◽  
pp. 028418512098693
Author(s):  
Yoshinori Funama ◽  
Seitaro Oda ◽  
Masafumi Kidoh ◽  
Daisuke Sakabe ◽  
Takeshi Nakaura

Background The image quality directly affects the accuracy of computed tomography (CT) extracellular volume (ECV) quantification. Purpose To investigate the effects of image quality and acquisition protocol on the accuracy of ECV quantification. Material and Methods One-volume scans were performed on a 320-row multidetector CT volume scanner using a multi-energy CT phantom. To simulate the blood pool and myocardium, solid rods representing blood and soft tissue were used in precontrast CT. Moreover, the solid rods including different iodine concentrations were used in postcontrast CT. The tube voltage was set at 120 kVp, and the tube current was changed from 750 mA (100% dose) to 190 mA (25% dose). All images underwent full- and half-scan reconstructions based on model-based iterative reconstruction. The ECV was calculated from the CT numbers between pre- and postcontrast. Results The mean ECV with full- and half-scan reconstructions at the central portion was 0.275 at 100% scan dose to 0.271 at 25% scan dose and 0.276 at 100% scan dose to 0.269 at 25% scan dose. Compared with that in the 100% scan dose, the variation in each ECV increased with decreasing radiation dose. The ECV at the center of the image along the z-axis had lower variation than that at outer portion of the images. On the reconstruction algorithm, there was no statistical difference in ECVs with full- and half-scan reconstructions. Conclusion For stable ECV quantifications, excessive radiation dose reduction may be inappropriate, and it is better to consider the variations in ECV values depending on the slice location.

2011 ◽  
Vol 80 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Waldemar Hosch ◽  
Tobias Heye ◽  
Felix Schulz ◽  
Stephanie Lehrke ◽  
Martin Schlieter ◽  
...  

2021 ◽  
Vol 47 (3) ◽  
pp. 1211-1224
Author(s):  
Justin E Ngaile ◽  
Peter K Msaki ◽  
Evarist M Kahuluda ◽  
Furaha M Chuma ◽  
Jerome M Mwimanzi ◽  
...  

The aim of the study was to examine the effect of lowering tube potential and increase iodine concentration on image quality and radiation dose in computed tomography pulmonary angiography procedure. The pulmonary arteries were simulated by three syringes. The syringes were filled with 1:10 diluted solutions of 300 mg, 350 mg and 370 mg of iodine per millilitre concentration in three water-filled phantoms simulating thin, intermediate and thick patients. The phantoms were scanned at 80 kVp, 110 kVp and 130 kVp and 0.6 second rotation time using a 16 slice computed tomography (CT) scanner. The tube current was either fixed at 80, 100, 200, 250 and 300 mA or automatically adjusted with quality reference tube current-time product (mAsQR). In comparison with 130 kVp, images acquired at 80 kVp and 110 kVp, respectively, showed 76.2% to 99% and 19% to 26% enhancement in CT attenuation of iodinated contrast material. A volume CT dose index (CTDIvol) reduction by 35.3% was attained in small phantom with the use of 80 kVp, while in the medium phantom, a CTDIvol reduction by 29.9% was attained with the use of 110 kVp instead of 130 kVp. In light of the above, lowering tube potential and increase iodinated CM could substantially reduce the dose to small-sized adults and children. Keywords: Angiography; Computed tomography; Low tube potential; Iodinated contrast medium; Radiation dose


2009 ◽  
Vol 103 (8) ◽  
pp. 1168-1173 ◽  
Author(s):  
Ron Blankstein ◽  
Amar Shah ◽  
Rodrigo Pale ◽  
Suhny Abbara ◽  
Hiram Bezerra ◽  
...  

2009 ◽  
Vol 26 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Tony DeFrance ◽  
Eric Dubois ◽  
Dan Gebow ◽  
Alex Ramirez ◽  
Florian Wolf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document