scholarly journals Effect of Lowering Tube Potential and Increase Iodine Concentration of Contrast Medium on Radiation Dose and Image Quality in Computed Tomography Pulmonary Angiography Procedure: A Phantom Study

2021 ◽  
Vol 47 (3) ◽  
pp. 1211-1224
Author(s):  
Justin E Ngaile ◽  
Peter K Msaki ◽  
Evarist M Kahuluda ◽  
Furaha M Chuma ◽  
Jerome M Mwimanzi ◽  
...  

The aim of the study was to examine the effect of lowering tube potential and increase iodine concentration on image quality and radiation dose in computed tomography pulmonary angiography procedure. The pulmonary arteries were simulated by three syringes. The syringes were filled with 1:10 diluted solutions of 300 mg, 350 mg and 370 mg of iodine per millilitre concentration in three water-filled phantoms simulating thin, intermediate and thick patients. The phantoms were scanned at 80 kVp, 110 kVp and 130 kVp and 0.6 second rotation time using a 16 slice computed tomography (CT) scanner. The tube current was either fixed at 80, 100, 200, 250 and 300 mA or automatically adjusted with quality reference tube current-time product (mAsQR). In comparison with 130 kVp, images acquired at 80 kVp and 110 kVp, respectively, showed 76.2% to 99% and 19% to 26% enhancement in CT attenuation of iodinated contrast material. A volume CT dose index (CTDIvol) reduction by 35.3% was attained in small phantom with the use of 80 kVp, while in the medium phantom, a CTDIvol reduction by 29.9% was attained with the use of 110 kVp instead of 130 kVp. In light of the above, lowering tube potential and increase iodinated CM could substantially reduce the dose to small-sized adults and children. Keywords: Angiography; Computed tomography; Low tube potential; Iodinated contrast medium; Radiation dose

Author(s):  
Sultan Aldosari ◽  
Zhonghua Sun

Background: The aim of this study is to perform a systematic review of the feasibility and clinical application of double low-dose CT pulmonary angiography (CTPA) in the diagnosis of patients with suspected pulmonary embolism. Discussion: A total of 13 studies were found to meet selection criteria reporting both low radiation dose (70 or 80 kVp versus 100 or 120 kVp) and low contrast medium dose CTPA protocols. Lowdose CTPA resulted in radiation dose reduction from 29.6% to 87.5% in 12 studies (range: 0.4 to 23.5 mSv), while in one study, radiation dose was increased in the dual-energy CT group when compared to the standard 120 kVp group. CTPA with use of low contrast medium volume (range: 20 to 75 ml) was compared to standard CTPA (range: 50 to 101 ml) in 12 studies with reduction between 25 and 67%, while in the remaining study, low iodine concentration was used with 23% dose reduction achieved. Quantitative assessment of image quality (in terms of signal-to-noise ratio and contrast-to-noise ratio) showed that low-dose CTPA was associated with higher, lower and no change in image quality in 3, 3 and 6 studies, respectively when compared to the standard CTPA protocol. The subjective assessment indicated similar image quality in 11 studies between low-dose and standard CTPA groups, and improved image quality in 1 study with low-dose CTPA. Conclusion: This review shows that double low-dose CTPA is feasible in the diagnosis of pulmonary embolism with significant reductions in both radiation and contrast medium doses, without compromising diagnostic image quality.


2010 ◽  
Vol 51 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Peter Björkdahl ◽  
Ulf Nyman

Background: Concern has been raised regarding the mounting collective radiation doses from computed tomography (CT), increasing the risk of radiation-induced cancers in exposed populations. Purpose: To compare radiation dose and image quality in a chest phantom and in patients for the diagnosis of pulmonary embolism (PE) at 100 and 120 peak kilovoltage (kVp) using 16-multichannel detector computed tomography (MDCT). Material and Methods: A 20-ml syringe containing 12 mg I/ml was scanned in a chest phantom at 100/120 kVp and 25 milliampere seconds (mAs). Consecutive patients underwent 100 kVp ( n = 50) and 120 kVp ( n = 50) 16-MDCT using a “quality reference” effective mAs of 100, 300 mg I/kg, and a 12-s injection duration. Attenuation (CT number), image noise (1 standard deviation), and contrast-to-noise ratio (CNR; fresh clot = 70 HU) of the contrast medium syringe and pulmonary arteries were evaluated on 3-mm-thick slices. Subjective image quality was assessed. Computed tomography dose index (CTDIvol) and dose–length product (DLP) were presented by the CT software, and effective dose was estimated. Results: Mean values in the chest phantom and patients changed as follows when X-ray tube potential decreased from 120 to 100 kVp: attenuation +23% and +40%, noise +38% and +48%, CNR −6% and 0%, and CTDIvol −38% and −40%, respectively. Mean DLP and effective dose in the patients decreased by 42% and 45%, respectively. Subjective image quality was excellent or adequate in 49/48 patients at 100/120 kVp. No patient with a negative CT had any thromboembolism diagnosed during 3-month follow-up. Conclusion: By reducing X-ray tube potential from 120 to 100 kVp, while keeping all other scanning parameters unchanged, the radiation dose to the patient may be almost halved without deterioration of diagnostic quality, which may be of particular benefit in young individuals.


2012 ◽  
Vol 2 ◽  
pp. 57 ◽  
Author(s):  
J. Gossner

Computed tomography pulmonary angiography (CTPA) is the imaging test of choice in suspected pulmonary embolism. High flow rates for the administration of contrast medium are recommended, but these cannot be achieved in a number of patients due to poor peripheral venous access or when using certain central venous catheters. This small feasibility study has examined the CTPA data in a set of 22 patients in whom contrast medium was given at low flow rates (2.0 or 2.5 mL/s). Subjectively, all but one of the patients was judged to be diagnostic. Objectively, enhancement values ≥200 HU were reached in 92% of the examined central vessels (pulmonary trunk, main pulmonary arteries, and lobar arteries). In conclusion, even with a low injection rate CTPA is of diagnostic value in most patients.


Sign in / Sign up

Export Citation Format

Share Document