Right Hemisphere Memory Bias Does Not Extend to Involuntary Memories for Negative Scenes

Perception ◽  
2021 ◽  
Vol 50 (1) ◽  
pp. 27-38
Author(s):  
Ella K. Moeck ◽  
Nicole A. Thomas ◽  
Melanie K. T. Takarangi

Attention is unequally distributed across the visual field. Due to greater right than left hemisphere activation for visuospatial attention, people attend slightly more to the left than the right side. As a result, people voluntarily remember visual stimuli better when it first appears in the left than the right visual field. But does this effect—termed a right hemisphere memory bias—also enhance involuntary memory? We manipulated the presentation location of 100 highly negative images (chosen to increase the likelihood that participants would experience any involuntary memories) in three conditions: predominantly leftward (right hemisphere bias), predominantly rightward (left hemisphere bias), or equally in both visual fields (bilateral). We measured subsequent involuntary memories immediately and for 3 days after encoding. Contrary to predictions, biased hemispheric processing did not affect short- or long-term involuntary memory frequency or duration. Future research should measure hemispheric differences at retrieval, rather than just encoding.

2012 ◽  
Vol 1 (2) ◽  
pp. 55-61
Author(s):  
Aaron Wyland Walters

Abstract The current study explored how reaction time and accuracy differed in the left and right visual fields by altering various dot clusters in both number and organization. Researchers have hypothesized that the left hemisphere uses counting to judge small, disorganized clusters of objects accurately and that the right hemisphere uses estimation to judge clusters organized in geometric shape accurately. The current study tested both visual fields of participant’s with organized and unorganized clusters of dots. Dots were clustered between 3 and 12. The clusters were presented on separate sides of a computer screen to analyze visual field differences in counting and estimation. A central target was presented on the screen to maintain central focus for the visual fields. Data from 40 participants (30 men, 10 women) from a small liberal arts college indicated that when clusters reached between 7 and 8 dots, organization in the right visual field created inaccuracy in judgment. Reaction time data indicated that as number level increased, reaction time slowed. Reaction time data also showed that organization slowed reaction times in both visual fields. These data indicated that different numerical judgment abilities do exist within the hemispheres.


1973 ◽  
Vol 25 (3) ◽  
pp. 404-412 ◽  
Author(s):  
Gina Geffen ◽  
J. L. Bradshaw ◽  
N. C. Nettleton

The effect of different types of competing auditory tasks on laterality differences in visual perception was investigated. Right-handed subjects were presented with digits which occurred randomly in the left or right visual fields. They responded vocally to previously specified digits in a go, no-go reaction time situation. In the absence of any competing auditory task, digits presented in the right visual field were processed more quickly. This visual field difference in reaction time was in the same direction while subjects performed a secondary musical task. However, when a secondary verbal task had to be performed, digits in the left visual field received faster responses. The results support the view that the right hemisphere is capable of some language functions, and that hemispheric differences in performance have at their basis a quantitative asymmetry, which can be reversed even in normal subjects by overloading their limited capacity.


1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1993 ◽  
Vol 77 (3_suppl) ◽  
pp. 1299-1308 ◽  
Author(s):  
Peter Brugger ◽  
Alex Gamma ◽  
René Muri ◽  
Markus Schafer ◽  
Kirsten I. Taylor

30 right-handed subjects were given a lateralized tachistoscopic lexical-decision task. Subjects' belief in extrasensory perception (ESP) was assessed with a single six-point scale; 16 subjects were designated as believers in ESP and 14 subjects as nonbelievers. Believers in ESP did not exhibit a hemispheric asymmetry for the task while nonbelievers exhibited the expected right visual-field/left-hemisphere dominance documented in the literature. Believers' lack of asymmetry was not caused by an impaired left-hemisphere performance but rather by a significantly enhanced lexical-decision accuracy in the left visual field/right hemisphere compared to nonbelievers. These results are compatible with previous studies indicating a correlation between belief in ESP and a bias for right-hemisphere processing. Moreover, the results are relevant for a discussion of an association between paranormal beliefs and schizotypy: highly schizotypal individuals are not only particularly prone to believe in ESP but are also known to show an attenuation of hemispheric asymmetries in lateralized verbal tasks due to an enhanced contribution of the right hemisphere. We suggest that the neurological basis of delusion-like beliefs may involve a release of right-hemisphere function from left-hemisphere control and sketch the focus of research for a future “neuropsychology of belief.”


1995 ◽  
Vol 7 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Joseph B. Hellige ◽  
Elizabeth L. Cowin ◽  
Tami L. Eng

In each of two experiments, subjects were required to identify consonant-vowel-consonant nonsense syllables projected to the left visual fiel/right hemisphere (LVF/RH), right visual field/left hemisphere (RVF/LH), or to the CENTER of the visual field. There were fewer errors on RVF/LH than on LVF/RH trials and the pattern of errors was qualitatively different on RVF/LH and LVF/RH trials. The pattern of errors was consistent with the hypothesis that attention is distributed across the three letters in a relatively slow serial fashion on LVF/RH trials whereas attention is distributed more rapidly and evenly across the three letters on RVF/LH trials. Despite the large RVF/LH advantage, the qualitative pattern of errors on CENTER trials (when viewing conditions do not favor one hemisphere or the other) was very similar to the pattern obtained on LW/RH trials. Implications of this counterintuitive finding are considered for the nature of interhemispheric interaction.


2018 ◽  
Author(s):  
Alfredo Spagna ◽  
Tae Hyeong Kim ◽  
Tingting Wu ◽  
Jin Fan

AbstractOver forty years have passed since the first evidence showing the unbalanced attentional allocation of humans across the two visual fields, and since then, a wealth of behavioral, neurophysiological, and clinical data increasingly showed a right hemisphere dominance for orienting of attention. However, inconsistent evidence exists regarding the right-hemisphere dominance for executive control of attention, possibly due to a lack of consideration of its dynamics with the alerting and orienting functions. In this study, we used a version of the Attentional Network Test with lateralized presentation of the stimuli to the left visual field (processed by the right hemisphere, RH) and right visual field (processed by the left hemisphere, LH) to examine visual field differences in executive control of attention under conditions of alerting or orienting. Analyses of behavioral performance (reaction time and error rate) showed a more efficient executive control (reduced conflict effect) in the RH compared to the LH for the reaction time, under conditions of increased alerting and of informative spatial orienting. These results demonstrate the right-hemisphere superiority for executive control, and that this effect depends on the activation of the alerting and orienting functions.


1980 ◽  
Vol 32 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Albert N. Katz

Earlier studies involving the lateralization of arithmetic abilities have provided evidence for both right and left hemisphere superiorities. It is argued here that part of this inconsistency could be due to the complexity of the arithmetic computations which have been examined. The present studies examined a subprocess shown to be involved in more complex tasks, such as subtraction. The subprocess is the identification of which of two numbers is greater, and was tested by the flashing of a pair of digits to either the left or right visual field. Errors, reaction-times to make a decision, and examination of hand × visual field interactions all indicated that this subprocess is mediated by the right hemisphere. Correlational analysis was used to identify the operations underlying the observed lateralization of this ability. This analysis indicated that an operation indexed by the spatial order in which the digits were presented was effective in the right hemisphere but not the left hemisphere. Speculations on the nature of these operations were presented.


1994 ◽  
Vol 6 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Elizabeth L. Cowin ◽  
Joseph B. Hellige

The present experiment examined the effects of dioptric blurring on the performance of two different spatial processing tasks using the same visual stimuli. One task (the above/below, categorical task) required subjects to indicate whether a dot was above or below a horizontal line. The other task (the coordinate, near/far task) required subjects to indicate whether the dot was within 3 mm of the line. For both tasks, the stimuli on each trial were presented to either the right visual field and left hemisphere (RVF/LH) or the left Visual field and right hemisphere (LVF/RH). For the above/below task, dioptric blurring consistently increased reaction time (RT) and did so equally on LVF/RH and RVF/LH trials. Furthermore, there was no significant difference between the two visual fields for either clear or blurred stimuli. For the near/far task, dioptric blurring had no consistent effect on either RT or error rate for either visual field. On an initial block of trials, however, there were significantly fewer errors on LVF/RH than on RVF/LH trials, with the LVF/RH advantage being independent of whether the stimuli were clear or blurred. This initial LVF/RH advantage disappeared quickly with practice, regardless of whether the stimuli were clear or blurred. This pattern of results suggests that for both cerebral hemispheres, somewhat different aspects of visual information are relevant for categorical versus coordinate spatial processing and that the right hemisphere is superior to the left for coordinate (but not categorical) spatial processing.


1993 ◽  
Vol 8 (6) ◽  
pp. 301-307 ◽  
Author(s):  
E Aharonovich ◽  
N Karny ◽  
I Nachson

SummaryThe hypothesis that paranoid and non-paranoid schizophrenics are differentially associated with unilateral hemisphere dysfunction was tested on 12 paranoid and 12 non-paranoid schizophrenics, as well as on 24 affective patients and 24 normal controls. The subjects were presented for 150 ms with series of digit-pairs and open rings to the left or right visual fields. Overall recognition of digits and localization of gaps in the rings were better for the right than for the left visual field. However, performance of the paranoid and non-paranoid schizophrenics was relatively poorer in response to the right and left visual field stimuli, respectively. Since these data do not correspond to the findings obtained in the auditory modality, they were interpreted as indicating modality-specific associations of paranoid schizophrenia with left hemisphere dysfunction, and of non-paranoid schizophrenia with right hemisphere dysfunction.


1994 ◽  
Vol 47 (2) ◽  
pp. 291-310 ◽  
Author(s):  
Michael E. R. Nicholls

Divided visual field techniques were used to investigate hemispheric asymmetries for (a) the threshold of fusion of two flashes of light and (b) the detection of simultaneous versus successive events for a group of normal, right-handed adults. A signal detection analysis revealed a higher level of accuracy for the right visual field-left hemisphere (RVF-LH) relative to the left visual field-right hemisphere (LVF-RH) for both tasks. These results were interpreted in terms of a general left-hemisphere advantage for the discrimination of fine temporal events. The implications of these results for models of temporary asymmetry that describe the left hemisphere's advantage in terms of an exclusive specialization or relative superiority are then discussed.


Sign in / Sign up

Export Citation Format

Share Document