scholarly journals Book Review: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status

1974 ◽  
Vol 2 (1) ◽  
pp. 96-97
Author(s):  
J. D. Paull
1981 ◽  
Vol 51 (6) ◽  
pp. 1411-1416 ◽  
Author(s):  
R. M. Winslow ◽  
C. C. Monge ◽  
N. J. Statham ◽  
C. G. Gibson ◽  
S. Charache ◽  
...  

Whole blood O2 equilibrium curves (OEC) were measured in 46 Peruvians native to high altitude (4,540 m) and in 25 sea-level controls. A method was employed that records the entire OEC from 0 to 150 Torr with constant pH and PCO2. The data were analyzed by fitting the Adair equation describing the successive oxygenation of hemoglobin. At pH 7.4 the PO2 at which hemoglobin is half-saturated with O2 (P50) was significantly higher in the high-altitude population (31.2 +/- 1.9 Torr) than in controls (29.2 +/- 1.8 Torr, P less than 0.001). The acid-base status of the high-altitude subjects, however, was that of compensated respiratory alkalosis (plasma pH 7.439 +/- 0.065), and when the P50's were corrected to the subjects' plasma pH the values (30.1 +/- 2.2 Torr) could no longer be distinguished from the controls. We conclude that, on the average, increased P50 resulting from increased red cell 2,3-diphosphyoglycerate concentration at high altitude is offset by compensated respiratory alkalosis with the net result that the position of the OEC more closely approaches that of sea-level humans than has hitherto been thought. Considerable variation exists in P50, both at sea level and high altitude. This variation might have important consequences for acclimatization and survival under adverse environmental conditions.


1987 ◽  
Vol 253 (3) ◽  
pp. R450-R458 ◽  
Author(s):  
E. R. Swenson ◽  
T. H. Maren

We studied the roles of gill and erythrocyte carbonic anhydrase in normal CO2 transfer (metabolic CO2 elimination) and in HCO3- excretion during metabolic alkalosis in the resting and swimming dogfish shark, Squalus acanthias. Gill carbonic anhydrase was selectively inhibited (greater than 98.5%) by 1 mg/kg benzolamide, which caused no physiologically significant red cell carbonic anhydrase inhibition (approximately 40%). Enzyme in both tissues was inhibited by 30 mg/kg methazolamide (greater than 99%). Both drugs caused equivalent reductions in HCO3- excretion following an infusion of 9 mmol/kg NaHCO3 as measured by the rate of fall in plasma HCO3- and by transfer into seawater. Methazolamide (red cell and gill carbonic anhydrase inhibition) caused a respiratory acidosis in fish with normal acid-base status, whereas benzolamide (gill carbonic anhydrase inhibition) did not. The only effect observed with benzolamide in these fish was a small elevation in plasma HCO3-. These findings, taken together, suggest that red cell carbonic anhydrase is required for normal metabolic CO2 elimination by the gill. Although carbonic anhydrase is located in the respiratory epithelium, it appears to have no quantitative role in transfer of metabolic CO2 to the environment, a pattern similar to all terrestrial vertebrates. However, carbonic anhydrase in the gill is crucial to this organ's function in acid-base regulation, both in the excretion of H+ or HCO3- generated in normal metabolism and in various acid-base disturbances.


Sign in / Sign up

Export Citation Format

Share Document