Variability of oxygen affinity of blood: human subjects native to high altitude

1981 ◽  
Vol 51 (6) ◽  
pp. 1411-1416 ◽  
Author(s):  
R. M. Winslow ◽  
C. C. Monge ◽  
N. J. Statham ◽  
C. G. Gibson ◽  
S. Charache ◽  
...  

Whole blood O2 equilibrium curves (OEC) were measured in 46 Peruvians native to high altitude (4,540 m) and in 25 sea-level controls. A method was employed that records the entire OEC from 0 to 150 Torr with constant pH and PCO2. The data were analyzed by fitting the Adair equation describing the successive oxygenation of hemoglobin. At pH 7.4 the PO2 at which hemoglobin is half-saturated with O2 (P50) was significantly higher in the high-altitude population (31.2 +/- 1.9 Torr) than in controls (29.2 +/- 1.8 Torr, P less than 0.001). The acid-base status of the high-altitude subjects, however, was that of compensated respiratory alkalosis (plasma pH 7.439 +/- 0.065), and when the P50's were corrected to the subjects' plasma pH the values (30.1 +/- 2.2 Torr) could no longer be distinguished from the controls. We conclude that, on the average, increased P50 resulting from increased red cell 2,3-diphosphyoglycerate concentration at high altitude is offset by compensated respiratory alkalosis with the net result that the position of the OEC more closely approaches that of sea-level humans than has hitherto been thought. Considerable variation exists in P50, both at sea level and high altitude. This variation might have important consequences for acclimatization and survival under adverse environmental conditions.

Author(s):  
Michael M. Tymko ◽  
Christopher K. Willie ◽  
Connor A. Howe ◽  
Ryan L. Hoiland ◽  
Rachel Stone ◽  
...  

High-altitude exposure results in a hyperventilatory-induced respiratory alkalosis followed by renal compensation (bicarbonaturia) to return arterial blood pH(a) toward sea-level values. However, acid-base balance has not been comprehensively examined in both lowlanders and indigenous populations - where the latter are thought to be fully adapted to high-altitude. The purpose of this investigation was to compare acid-base balance between acclimatizing lowlanders, and Andean and Sherpa highlanders at various altitudes (~3,800, ~4,300, and ~5,000 m). We compiled data collected across five independent high-altitude expeditions and report the following novel findings: 1) at 3,800 m, Andeans (n=7) had elevated pHa compared to Sherpas (n=12; P<0.01), but not to lowlanders (n=16; nine days acclimatized; P=0.09); 2) at 4,300 m, lowlanders (n=16; 21 days acclimatized) had elevated pHa compared to Andeans (n=32) and Sherpas (n=11; both P<0.01), and Andeans had elevated pHa compared to Sherpas (P=0.01); and 3) at 5,000 m, lowlanders (n=16; 14 days acclimatized) had higher pHa compared to both Andeans (n=66) and Sherpas (n=18; P<0.01, and P=0.03, respectively), and Andean and Sherpa highlanders had similar blood pHa (P=0.65). These novel data characterize acid-base balance acclimatization and adaptation to various altitudes in lowlanders and indigenous highlanders.


PEDIATRICS ◽  
1975 ◽  
Vol 56 (6) ◽  
pp. 999-1004
Author(s):  
Daniel C. Shannon ◽  
Robert De Long ◽  
Barry Bercu ◽  
Thomas Glick ◽  
John T. Herrin ◽  
...  

The initial acid-base status of eight survivors of Reye's syndrome was characterized by acute respiratory alkalosis (Pco2=32 mm Hg; Hco3-= 22.0 mEq/liter) while that of eight children who died was associated with metabolic acidosis as well (HCO3-=10.0 mEq/liter). Arterialinternal jugular venous ammonia concentration differences on day 1 (299 mg/100 ml) and day 2 (90 mg/ 100 ml) reflected cerebral uptake of ammonia while those on days 3 and 4 (-43 and -55 mg/100 ml) demonstrated cerebral release. Arterial blood hyperammonemia can be detoxified safely in the brain as long as the levels do not exceed approximately 300µg/100 ml. Beyond that level lactic acidosis is observed, particularly in cerebral venous drainage. Arterial blood hyperammonemia was also related to the extent of alveolar hyperventilation. These findings are very similar to those seen in experimental hyperammonemia and support the concept that neurotoxicity in children with Reye's syndrome is at least partly due to impaired oxidative metabolism secondary to hyperammonemia.


Perfusion ◽  
1986 ◽  
Vol 1 (4) ◽  
pp. 231-238 ◽  
Author(s):  
Julie A Swain

The optimal method of pH management during hypothermia is controversial. A review of current experimental and laboratory investigations comparing different pH schemes is presented. The biochemical and metabolic consequences of keeping pH constant (pH-stat) as compared to allowing the pH to increase with hypothermia (alpha-stat) are discussed. It is concluded that, on the basis of experimental and clinical studies, the alpha-stat pH management scheme may be preferable to that of keeping pH constant throughout a wide temperature range in humans.


1964 ◽  
Vol 19 (2) ◽  
pp. 319-321 ◽  
Author(s):  
J. W. Severinghaus ◽  
A. Carceleń B.

CSF pH was shown in a prior report to remain essentially constant during 8 days of acclimatization to 3,800 m. In order to further evaluate the possible role of CSF acid-base equilibria in the regulation of respiration, 20 Peruvian Andean natives were studied at altitudes of 3,720–4,820 m. In ten subjects at 3,720 m, means were: CSF pH 7.327, Pco2 43, HCO3- 21.5, Na+ 136, K+ 2.6, Cl- 124, lactate 30 mg/100 ml. Arterial blood: pH 7.43, Pco2 32.5, HCO3- 21.3, Na+ 136, K+ 4.2, Cl- 107, hematocrit 49, SaOO2 89.6. In six subjects at 4,545 m and four at 4,820 m CSF values were not significantly different; mean arterial Pco2 was 32.6 and 32.3, respectively. The only significant variations with altitude were the expected lowering of PaOO2 to 47 and 43.5 mm Hg, and of SaOO2 to 84.2 and 80.7, and increase of hematocrit to 67% and 75%, respectively. The natives differed from recently acclimatized sea-level residents in showing less ventilation (higher Pco2) in response to the existing hypoxia, and less alkaline arterial blood. The difference appears to relate to peripheral chemoreceptor response to hypoxia rather than central medullary chemoreceptor. respiratory regulation at high altitude; chronic acclimatization to altitude; peripheral chemoreceptor response to hypoxia; CSF and medullary respiratory chemoreceptors Submitted on June 12, 1963


2020 ◽  
Vol 319 (6) ◽  
pp. F1081-F1089
Author(s):  
Andrew R. Steele ◽  
Michael M. Tymko ◽  
Victoria L. Meah ◽  
Lydia L. Simpson ◽  
Christopher Gasho ◽  
...  

Early acclimatization to high altitude is characterized by various respiratory, hematological, and cardiovascular adaptations that serve to restore oxygen delivery to tissue. However, less is understood about renal function and the role of renal oxygen delivery (RDO2) during high altitude acclimatization. We hypothesized that 1) RDO2 would be reduced after 12 h of high altitude exposure (high altitude day 1) but restored to sea level values after 1 wk (high altitude day 7) and 2) RDO2 would be associated with renal reactivity, an index of acid-base compensation at high altitude. Twenty-four healthy lowlander participants were tested at sea level (344 m, Kelowna, BC, Canada) and on day 1 and day 7 at high altitude (4,330 m, Cerro de Pasco, Peru). Cardiac output, renal blood flow, and arterial and venous blood sampling for renin-angiotensin-aldosterone system hormones and NH2-terminal pro-B-type natriuretic peptides were collected at each time point. Renal reactivity was calculated as follows: (Δarterial bicarbonate)/(Δarterial Pco2) between sea level and high altitude day 1 and sea level and high altitude day 7. The main findings were that 1) RDO2 was initially decreased at high altitude compared with sea level (ΔRDO2: −22 ± 17%, P < 0.001) but was restored to sea level values on high altitude day 7 (ΔRDO2: −6 ± 14%, P = 0.36). The observed improvements in RDO2 resulted from both changes in renal blood flow (Δ from high altitude day 1: +12 ± 11%, P = 0.008) and arterial oxygen content (Δ from high altitude day 1: +44.8 ± 17.7%, P = 0.006) and 2) renal reactivity was positively correlated with RDO2 on high altitude day 7 ( r = 0.70, P < 0.001) but not high altitude day 1 ( r = 0.26, P = 0.29). These findings characterize the temporal responses of renal function during early high altitude acclimatization and the influence of RDO2 in the regulation of acid-base balance.


Sign in / Sign up

Export Citation Format

Share Document