Application of Advanced Driver-Assistance Systems in Police Vehicles

Author(s):  
Vanessa Nasr ◽  
David Wozniak ◽  
Farzaneh Shahini ◽  
Maryam Zahabi

Motor vehicle crashes are one of the leading causes of injuries and deaths for police officers. Advanced driver-assistance systems (ADAS) are driving control systems that have been found to improve civilian drivers’ safety; however, the impact of ADAS on police officers’ driving safety has yet to be investigated thoroughly. Disparities between driver states and tasks performed while driving between police and civilian drivers necessitate this distinction. This study identified the types of ADAS used in police vehicles, their impact on officers’ safety, and proposed potential future ADAS features to be implemented in police vehicles. A systematic literature review was conducted using Google Scholar, Compendex, Web of Science, Transport Research International Documentation (TRID), and Google Patents databases to identify the most prevalent police vehicles used in the U.S., available ADAS features in those vehicles, and the impact of ADAS on officers’ safety. A list of recommended ADAS features was developed based on the review of literature, authors’ knowledge and experience in the field, and the findings of an online survey with 73 police officers. Results indicated the addition of multiple ADAS features including the front vehicle detection system, intersection collision avoidance, evasive steering systems, left turn assist, traffic sign detection system, traffic jam assist, two lane and lane-ending detection, wrong-way alert, and autonomous highway driving features have the potential to improve officer safety and performance while driving. However, there was a void of studies focused on ADAS effects on police driving safety which needs to be addressed in future investigations.

2021 ◽  
Vol 15 ◽  
Author(s):  
Francesco Rundo ◽  
Sabrina Conoci ◽  
Concetto Spampinato ◽  
Roberto Leotta ◽  
Francesca Trenta ◽  
...  

In recent years, the automotive field has been changed by the accelerated rise of new technologies. Specifically, autonomous driving has revolutionized the car manufacturer's approach to design the advanced systems compliant to vehicle environments. As a result, there is a growing demand for the development of intelligent technology in order to make modern vehicles safer and smarter. The impact of such technologies has led to the development of the so-called Advanced Driver Assistance Systems (ADAS), suitable to maintain control of the vehicle in order to avoid potentially dangerous situations while driving. Several studies confirmed that an inadequate driver's physiological condition could compromise the ability to drive safely. For this reason, assessing the car driver's physiological status has become one of the primary targets of the automotive research and development. Although a large number of efforts has been made by researchers to design safety-assessment applications based on the detection of physiological signals, embedding them into a car environment represents a challenging task. These mentioned implications triggered the development of this study in which we proposed an innovative pipeline, that through a combined less invasive Neuro-Visual approach, is able to reconstruct the car driver's physiological status. Specifically, the proposed contribution refers to the sampling and processing of the driver PhotoPlethysmoGraphic (PPG) signal. A parallel enhanced low frame-rate motion magnification algorithm is used to reconstruct such features of the driver's PhotoPlethysmoGraphic (PPG) data when that signal is no longer available from the native embedded sensor platform. A parallel monitoring of the driver's blood pressure levels from the PPG signal as well as the driver's eyes dynamics completes the reconstruction of the driver's physiological status. The proposed pipeline has been tested in one of the major investigated automotive scenarios i.e., the detection and monitoring of pedestrians while driving (pedestrian tracking). The collected performance results confirmed the effectiveness of the proposed approach.


2020 ◽  
Vol 11 ◽  
Author(s):  
Adolphe J. Béquet ◽  
Antonio R. Hidalgo-Muñoz ◽  
Christophe Jallais

Background: Stress can frequently occur in the driving context. Its cognitive effects can be deleterious and lead to uncomfortable or risky situations. While stress detection in this context is well developed, regulation using dedicated advanced driver-assistance systems (ADAS) is still emergent.Objectives: This systematic review focuses on stress regulation strategies that can be qualified as “subtle” or “mindless”: the technology employed to perform regulation does not interfere with an ongoing task. The review goal is 2-fold: establishing the state of the art on such technological implementation in the driving context and identifying complementary technologies relying on subtle regulation that could be applied in driving.Methods: A systematic review was conducted using search operators previously identified through a concept analysis. The patents and scientific studies selected provide an overview of actual and potential mindless technology implementations. These are then analyzed from a scientific perspective. A classification of results was performed according to the different stages of emotion regulation proposed by the Gross model.Results: A total of 47 publications were retrieved, including 21 patents and 26 studies. Six of the studies investigated mindless stress regulation in the driving context. Patents implemented strategies mostly linked to attentional deployment, while studies tended to investigate response modulation strategies.Conclusions: This review allowed us to identify several ADAS relying on mindless computing technologies to reduce stress and better understand the underlying mechanisms allowing stress reduction. Further studies are necessary to better grasp the effect of mindless technologies on driving safety. However, we have established the feasibility of their implementation as ADAS and proposed directions for future research in this field.


Sign in / Sign up

Export Citation Format

Share Document