scholarly journals Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics during Drop Landings

2009 ◽  
Vol 37 (9) ◽  
pp. 1821-1830 ◽  
Author(s):  
Sandra J. Shultz ◽  
Randy J. Schmitz

Background Varus-valgus (LAXVV) and internal-external (LAXIER) rotational knee laxity have received attention as potential contributing factors in anterior cruciate ligament injury. This study compared persons with above- and below-average LAXVV and LAXIER values on hip and knee neuromechanics during drop jump landings. Hypothesis People with greater LAXVV and LAXIER values will have greater challenges controlling frontal and transverse plane knee motions, as evidenced by greater joint excursions, joint moments, and muscle activation levels during the landing phase. Study Design Descriptive laboratory study. Methods Recreationally active participants (52 women and 44 men) between 18 and 30 years old were measured for LAXVV and LAXIER and for their muscle activation and transverse and frontal plane hip and knee kinetics and kinematics during the initial landing phase of a drop jump. The mean value was obtained for each sex, and those with above-average values on LAXVV and LAXIER (LAXHIGH = 17 women, 16 men) were compared with those with below-average values (LAXLOW = 18 women, 17 men). Results Women with LAXHIGH verus LAXLOW were initially positioned in greater hip adduction and knee valgus and also produced more prolonged internal hip adduction and knee varus moments as they moved toward greater hip adduction and internal rotation as the landing progressed. These patterns in LAX HIGH women were accompanied by greater prelanding and postlanding muscle activation amplitudes. Men with LAXHIGH versus LAXLOW also demonstrated greater hip adduction motion and produced greater internal hip internal rotation and knee varus and internal rotation moments. Conclusion Participants with greater LAXVV and LAXIER landed with greater hip and knee transverse and frontal plane hip and knee motions. Clinical Relevance People (especially, women) with increased frontal and transverse plane knee laxity demonstrate motions associated with noncontact anterior cruciate ligament injury mechanisms.

2005 ◽  
Vol 33 (10) ◽  
pp. 1527-1537 ◽  
Author(s):  
Eva Ageberg ◽  
David Roberts ◽  
Eva Holmström ◽  
Thomas Fridén

Background It has been shown previously that an anterior cruciate ligament injury may affect postural control, measured by balance in single-limb stance. To our knowledge, no studies have reported the influence of measures of impairment on postural control after such an injury. Purpose To assess the influence of knee laxity, proprioception, and muscle strength on balance in single-limb stance and to study the correlation between balance in single-limb stance and subjective estimation of extremity function. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 36 patients with a unilateral, nonoperated, nonacute anterior cruciate ligament injury were examined with regard to anterior knee laxity, proprioception, muscle strength, and stabilometry (amplitude and average speed of the center of pressure movements). Subjective estimation of extremity function was measured on a visual analog scale. Results The multiple regression analysis showed that high knee laxity values were associated with high amplitude values and low average speed. Poor proprioception and high muscle strength values were associated with low average speed among the women only. Low amplitude values correlated with better subjective function. Conclusion Anterior knee laxity, proprioception, and muscle strength seem to play a role in maintaining balance in single-limb stance. Patients with low amplitude values in stabilometry were those with better subjective function.


2021 ◽  
Vol 30 (1) ◽  
pp. 97-104
Author(s):  
Mark C. Richardson ◽  
Andrew Wilkinson ◽  
Paul Chesterton ◽  
William Evans

Context: Despite significant emphasis on anterior cruciate ligament injury prevention, injury rates continue to rise and reinjury is common. Interventions to reduce injury have included resistance, balance, and jump training elements. The use of sand-based jump training has been postulated as an effective treatment. However, evidence on landing mechanics is limited. Objective: To determine potential differences in landing strategies and subsequent landing knee valgus when performing single-leg landing (SLL) and drop jump (DJ) tasks onto sand and land, and to compare between both male and female populations. Design: A randomized repeated-measures crossover design. Setting: University laboratory. Participants: Thirty-one participants (20 males and 11 females) from a university population. Interventions: All participants completed DJ and SLL tasks on both sand and land surfaces. Main Outcome Measures: Two-dimensional frontal plane projection angle (FPPA) of knee valgus was measured in both the DJ and SLL tasks (right and left) for both sand and land conditions. Results: FPPA was lower (moderate to large effect) for SLL in sand compared with land in both legs (left: 4.3° [2.8°]; right: 4.1° [3.8°]) for females. However, effects were unclear (left: −0.7° [2.2°]) and trivial for males (right: −1.1° [1.9°]). FPPA differences for males and females performing DJ were unclear; thus, more data is required. Differences in FPPA (land vs sand) with respect to grouping (sex) for both SLL left (4.9° [3.0°]) and right (5.1° [4.0°]) were very likely higher (small)/possibly moderate for females compared with males. Conclusions: The effects of sand on FPPA during DJ tasks in males and females are unclear, and further data is required. However, the moderate to large reductions in FPPA in females during SLL tasks suggest that sand may provide a safer alternative to firm ground for female athletes in anterior cruciate ligament injury prevention and rehabilitation programs, which involve a SLL component.


2016 ◽  
Vol 51 (12) ◽  
pp. 1003-1012 ◽  
Author(s):  
Ram Haddas ◽  
Troy Hooper ◽  
C. Roger James ◽  
Phillip S. Sizer

Context:Volitional preemptive abdominal contraction (VPAC) during dynamic activities may alter trunk motion, but the role of the core musculature in positioning the trunk during landing tasks is unclear.Objective:To determine whether volitional core-muscle activation incorporated during a drop vertical jump alters lower extremity kinematics and kinetics, as well as trunk and lower extremity muscle activity at different landing heights.Design:Controlled laboratory study.Setting:Clinical biomechanics laboratory.Patients or Other Participants:Thirty-two young healthy adults, consisting of 17 men (age = 25.24 ± 2.88 years, height = 1.85 ± 0.06 m, mass = 89.68 ± 16.80 kg) and 15 women (age = 23.93 ± 1.33 years, height = 1.67 ± 0.08 m, mass = 89.68 ± 5.28 kg).Intervention(s):Core-muscle activation using VPAC.Main Outcome Measure(s):We collected 3-dimensional ankle, knee, and hip motions, moments, and powers; ground reaction forces; and trunk and lower extremity muscle activity during 0.30- and 0.50-m drop vertical-jump landings.Results:During landing from a 0.30-m height, VPAC performance increased external oblique and semitendinosis activity, knee flexion, and knee internal rotation and decreased knee-abduction moment and knee-energy absorption. During the 0.50-m landing, the VPAC increased external oblique and semitendinosis activity, knee flexion, and hip flexion and decreased ankle inversion and hip-energy absorption.Conclusions:The VPAC performance during landing may protect the anterior cruciate ligament during different landing phases from different heights, creating a protective advantage just before ground contact and after the impact phase. Incorporating VPAC during high injury-risk activities may enhance pelvic stability, improve lower extremity positioning and sensorimotor control, and reduce anterior cruciate ligament injury risk while protecting the lumbar spine.


Sign in / Sign up

Export Citation Format

Share Document