Effect of a Simple Collagen Type I Sponge for Achilles Tendon Repair in a Rat Model

2016 ◽  
Vol 44 (8) ◽  
pp. 1998-2004 ◽  
Author(s):  
Sebastian A. Müller ◽  
Lutz Dürselen ◽  
Patricia Heisterbach ◽  
Chris Evans ◽  
Martin Majewski
2007 ◽  
Vol 13 (6) ◽  
pp. 1219-1226 ◽  
Author(s):  
Natalia Juncosa-Melvin ◽  
Karl S. Matlin ◽  
Robert W. Holdcraft ◽  
Victor S. Nirmalanandhan ◽  
David L. Butler

2021 ◽  
Author(s):  
Md Shahidul Islam ◽  
Somayeh Ebrahimi-Barough ◽  
Mamun Al Mahtab ◽  
Sadegh Shirian ◽  
Hamid Reza Aghayan ◽  
...  

Abstract Osteoarthritis (OA) is the most common form of degenerative joint disease, affecting more than 25% of the adult though prevalent in the elderly population. Most of the current therapeutic modalities aim at symptomatic treatment and lingering the disease progression. In recent years, regenerative medicine such as stem cell transplantation and tissue engineering has been suggested as a potential curative intervention for OA. The objective of current study was to assess the safety and efficacy of an injectable tissue-engineered construct composed of BMMSCs, PRP, and Collagen type I in rat model of OA. To produce collagen type I, PRP and BMMSCs, male Wistar rats were ethically euthanized. After expansion and characterization of rat BMMSCs (rBMMSCs), tissue-engineered construct was formed by combination of appropriate amount of collagen type I, PRP and rBMMSCs. In vitro studies were conducted to evaluate the effect of PRP on chondrogenic differentiation capacity of encapsulated cells. Then tissue-engineered construct was injected in knee joint of rat model of OA (24 rat in 4 groups: OA, OA+MSC, ‎OA+Collagen+MSC+PRP, OA+MSC+Collagen). After 6 weeks, the animals were euthanized and knee joint histopathology examinations were performed to evaluate the effect of each treatment on OA. Tissue-engineered construct was successfully manufactured and in vitro assays demonstrated that relevant chondrogenic genes and proteins expression were higher in PRP group than the others. Histopathological findings of the knee joint samples showed favorable regenerative effect of rBMMSCs+PRP+Collagen group comparing to others. In this study, we introduced an injectable tissue-engineered product composed of rBMMSCs+PRP+Collagen with potential regenerative effect on cartilage damage caused by OA.


2018 ◽  
Vol 9 ◽  
pp. 204173141881118 ◽  
Author(s):  
Jolanta B Norelli ◽  
Dawid P Plaza ◽  
Drew N Stal ◽  
Anish M Varghese ◽  
Haixiang Liang ◽  
...  

The purpose of this study was to characterize rat adipose-derived stem cells, induce adipose-derived stem cell tenogenesis, and analyze adipose-derived stem cell effects on tendon repair in vivo. Adipose-derived stem cells demonstrated an immunomodulatory, pro-angiogenic, and pro-proliferatory profile in vitro. Tenogenesis was induced for 1, 7, 14, and 21 days with 24 combinations of growth differentiation factor-5, 6, and 7 and platelet-derived growth factor–BB. Adipose-derived stem cells expression of scleraxis and collagen type I increased the most after 14 days of induction with growth differentiation factor-6 and platelet-derived growth factor–BB. Achilles excision defects injected with hydrogel alone (Gp2), with undifferentiated (Gp3) adipose-derived stem cells, or tenogenically differentiated (Gp4) adipose-derived stem cells exhibited improved tissue repair compared with untreated tendons (Gp1). Addition of adipose-derived stem cells improved tissue cytoarchitecture and increased expression of collagen type I and III, scleraxis, and tenomodulin. Adipose-derived stem cells significantly improved biomechanical properties (ultimate load and elastic toughness) over time more than hydrogel alone, while tenogenically differentiated adipose-derived stem cells improved the mean histological score and collagen fiber dispersion range closest to normal tendon. In addition, tendon sections treated with GFP-adipose-derived stem cells exhibited green fluorescence and positive GFP immunostaining on microscopy confirming the in vivo survival of adipose-derived stem cells that were injected into tendon defects to support the effects of adipose-derived stem cells on tissue up to 4.5 weeks post injury.


2020 ◽  
Vol 14 (3) ◽  
pp. 155-160
Author(s):  
Sobhani-Eraghi A ◽  
Panahi M ◽  
Shirani A ◽  
Pazoki-Toroudi H

Author(s):  
Natalia Juncosa-Melvin ◽  
Karl S. Matlin ◽  
Robert W. Holdcraft ◽  
Victor S. Nirmalanandhan ◽  
David L. Butler

Tendons (rotator cuff, Achilles and patellar tendons) are among the most commonly injured soft tissues [1]. Many repairs/reconstructions have been attempted using sutures, resorbable biomaterials, autografts, and allografts, but with varying success. A tissue engineered repair using mesenchymal stem cells (MSCs) is attractive [2–4] but often lacks initial stiffness and strength [5].


Sign in / Sign up

Export Citation Format

Share Document