scholarly journals Tenogenically differentiated adipose-derived stem cells are effective in Achilles tendon repair in vivo

2018 ◽  
Vol 9 ◽  
pp. 204173141881118 ◽  
Author(s):  
Jolanta B Norelli ◽  
Dawid P Plaza ◽  
Drew N Stal ◽  
Anish M Varghese ◽  
Haixiang Liang ◽  
...  

The purpose of this study was to characterize rat adipose-derived stem cells, induce adipose-derived stem cell tenogenesis, and analyze adipose-derived stem cell effects on tendon repair in vivo. Adipose-derived stem cells demonstrated an immunomodulatory, pro-angiogenic, and pro-proliferatory profile in vitro. Tenogenesis was induced for 1, 7, 14, and 21 days with 24 combinations of growth differentiation factor-5, 6, and 7 and platelet-derived growth factor–BB. Adipose-derived stem cells expression of scleraxis and collagen type I increased the most after 14 days of induction with growth differentiation factor-6 and platelet-derived growth factor–BB. Achilles excision defects injected with hydrogel alone (Gp2), with undifferentiated (Gp3) adipose-derived stem cells, or tenogenically differentiated (Gp4) adipose-derived stem cells exhibited improved tissue repair compared with untreated tendons (Gp1). Addition of adipose-derived stem cells improved tissue cytoarchitecture and increased expression of collagen type I and III, scleraxis, and tenomodulin. Adipose-derived stem cells significantly improved biomechanical properties (ultimate load and elastic toughness) over time more than hydrogel alone, while tenogenically differentiated adipose-derived stem cells improved the mean histological score and collagen fiber dispersion range closest to normal tendon. In addition, tendon sections treated with GFP-adipose-derived stem cells exhibited green fluorescence and positive GFP immunostaining on microscopy confirming the in vivo survival of adipose-derived stem cells that were injected into tendon defects to support the effects of adipose-derived stem cells on tissue up to 4.5 weeks post injury.

Author(s):  
Adrianto Prasetyo Perbowo ◽  
Dwikora Novembri Utomo ◽  
Lukas Widhiyanto ◽  
Primadenny Ariesa Airlangga ◽  
Purwati Purwati

Abstract Cell-based therapies such as Scaffold, stem cells, and secretome, are one of the alternatives to enhance the regeneration of hyaline-like cartilage in cases of cartilage defects. This study is an in-vivo experiment using animal models, in which we apply a composite of DFLP (Dwikora-Ferdiansyah-Lesmono-Purwati) Scaffold and Adipose-Derived Stem Cells (ASCs) or Secretome to an injury model on the distal femoral trochlea of New Zealand White Rabbits. The animals were divided into four groups: (1) control (K); (2) Scaffold only (S); (3) Scaffold + ASCs (SA); (4) Scaffold + Secretome (SS). Animals were terminated in the 12th week, and an immunohistochemistry (IHC) evaluation for Collagen type I and II were done. Statistical analysis shows that collagen type I IHC between groups shows no significant difference (p = 0.546). Collagen type II IHC shows significant difference between groups (p = 0,016). The findings in this study showed that Scaffold + ASCs group and Scaffold + Secretome have better collagen type II expression compared to the control group. DFLP Scaffold composite with ASCs or Secretome shows potential for cartilage regeneration therapy by increasing type II collagen expression as in hyaline-like cartilage which may be used for regenerative therapy for cartilage defects. Keywords             : DFLP Scaffold; Adipose-Derived Stem Cells (ASCs); Secretome; Collagen Type I; Collagen Type IICorrespondence    : [email protected]


2015 ◽  
Vol 135 (4) ◽  
pp. 1056-1064 ◽  
Author(s):  
Wei Z. Wang ◽  
Xin-Hua Fang ◽  
Shelley J. Williams ◽  
Linda L. Stephenson ◽  
Richard C. Baynosa ◽  
...  

2007 ◽  
Vol 13 (6) ◽  
pp. 1219-1226 ◽  
Author(s):  
Natalia Juncosa-Melvin ◽  
Karl S. Matlin ◽  
Robert W. Holdcraft ◽  
Victor S. Nirmalanandhan ◽  
David L. Butler

HPB ◽  
2016 ◽  
Vol 18 ◽  
pp. e289
Author(s):  
J.U. Chong ◽  
S.W. Lee ◽  
S.Y. Bak ◽  
S.O. Min ◽  
H. Suh ◽  
...  

2007 ◽  
Vol 76 (2) ◽  
pp. 265-275 ◽  
Author(s):  
P. Gál ◽  
A. Nečas ◽  
L. Plánka ◽  
H. Kecová ◽  
L. Křen ◽  
...  

Mesenchymal stem cells (MSCs) from bone marrow are multipotent cells capable of forming cartilage, bone, and other connective tissues. The objective of this study was to determine whether the use of allogenic mesenchymal stem cells could functionally heal a defect in the distal femoral physis in rabbits without the use of immunosuppressive therapy. A iatrogenic defect was created in the lateral femoral condyle of thirty-two New Zealand white rabbits, 7 weeks old, weighing 2.25 ± 0.24 kg. Each defect, 3.5 mm in width and 12 mm in length, in the right distal femoral physis was treated with allogenic mesenchymal stem cells in new composite hyaluronate/collagen type I/fibrin scaffold. The healing response was evaluated radiographically, by MRI (three weeks and four months after implantation) and also histologically, by Pearl’s reaction and with immunofluorescence (four months after implantation). The results were compared with the data for the control defects (without stem cell implantation) in left distal femoral physes. On average, right femurs with a damaged distal physis and transplanted MSCs grew more in length (0.55 ± 0.21 cm) compared with left femurs with a physeal defect without stem cell transplantation (0.46 ± 0.23 cm). Valgus deformity of right femurs with a physeal defect and transplanted MSCs was mild (0.2 ± 0.1 °). On the contrary, left femurs with a physeal defect without transplanted MSCs showed a significant valgus deformity (2.7 ± 1.6 °). For defects treated with allogenic mesenchymal stem cell implants, no adverse immune response and implant rejection were detected in this model. Histologically, no lymphocytic infiltration occurred. At four months after transplantation, hyaline cartilage had formed throughout the defects treated with allogenic MSCs. Labelled mesenchymal stem cells/differentiated chondrocytes were detected in the physeal defects based on magnetic resonance imaging and immunofluorescence. The results of this study demonstrated that allogenic mesenchymal stem cells in a new composite hyaluronate/collagen type I/fibrin scaffold repaired iatrogenic defects in the distal femoral physes in rabbits without the use of immunosuppressive therapy. The use of allogenic mesenchymal stem cells for the repair of physeal defects may be an alternative to autologous MSCs transplantation. An allogenic approach would enable mesenchymal stem cells to be isolated from any donor, providing a readily available source of cells for cartilage tissue repair.


Author(s):  
Natalia Juncosa-Melvin ◽  
Karl S. Matlin ◽  
Robert W. Holdcraft ◽  
Victor S. Nirmalanandhan ◽  
David L. Butler

Tendons (rotator cuff, Achilles and patellar tendons) are among the most commonly injured soft tissues [1]. Many repairs/reconstructions have been attempted using sutures, resorbable biomaterials, autografts, and allografts, but with varying success. A tissue engineered repair using mesenchymal stem cells (MSCs) is attractive [2–4] but often lacks initial stiffness and strength [5].


2018 ◽  
Vol 34 (08) ◽  
pp. 601-609 ◽  
Author(s):  
Javier Casado ◽  
Elena Abellán ◽  
Francisco Vela ◽  
Verónica Álvarez ◽  
Alejandra Usón ◽  
...  

Background Ischemia-reperfusion (I/R) injury is inevitable during free tissue transfers. When the period of ischemia exceeds the tissue tolerance, it causes necrosis and flap failure. The aim of this study was to investigate the effects of adipose-derived stem cells (ASCs) embedded in a collagen type I scaffold on the survival of free skin flaps to counteract I/R injury. Methods Left superficial caudal epigastric skin flaps (3 × 6 cm) were performed in 28 Wistar rats that were divided into four groups. The flaps elevated in the animals of the control group did not suffer any ischemic insult, and the vascular pedicle was not cut. All other flaps were subjected to 8 hours of ischemia prior to revascularization: I/R control group (8 hours of ischemia), I/R scaffold group (8 hours of ischemia + collagen type I scaffold), and I/R scaffold–ASCs group (8 hours of ischemia + collagen type I scaffold with rat ASCs embedded). Transit-time ultrasound blood flow measurements were performed. After 7 days, the areas of flap survival were measured and tissues were stained with hematoxylin/eosin and Masson's trichrome stain for histological analysis. Results The mean percentage flap survival area was significantly higher in the ASCs-treated flaps (I/R scaffold–ASCs group) compared with the ischemic controls (I/R control group and I/R scaffold group). Higher vascular proliferation and lower severity of necrosis and inflammatory changes were seen histologically in the samples of the ASCs-treated group. No significant difference in blood flow was detected between groups. Conclusion Subcutaneous administration of ASCs embedded on a collagen type I scaffold reduces tissue damage after I/R injury in microvascular free flaps.


Sign in / Sign up

Export Citation Format

Share Document