Steep Posterior Tibial Slope and Excessive Anterior Tibial Translation Are Predictive Risk Factors of Primary Anterior Cruciate Ligament Reconstruction Failure: A Case-Control Study With Prospectively Collected Data

2020 ◽  
Vol 48 (12) ◽  
pp. 2954-2961 ◽  
Author(s):  
Qian-kun Ni ◽  
Guan-yang Song ◽  
Zhi-jun Zhang ◽  
Tong Zheng ◽  
Zheng Feng ◽  
...  

Background: Steep posterior tibial slope (PTS) and excessive anterior tibial translation (ATT) have been identified as important anatomic risk factors for anterior cruciate ligament (ACL) injury, which have raised concerns about clinical outcomes after primary ACL reconstruction (ACLR). Purpose: To investigate anatomic risk factors of primary ACLR failure and to determine the cutoff values of PTS and ATT for predicting primary ACLR failure. Study Design: Case-control study; Level of evidence, 3. Methods: Between November 2015 and May 2017, a total of 215 consecutive patients with clinically diagnosed noncontact ACL injuries who underwent primary anatomic ACLR were retrospectively analyzed. Among them, 25 patients who showed complete discontinuity of ACL fibers on final follow-up magnetic resonance imaging scans were allocated into the failure group (study group). They were matched 1:2 to 50 control participants who showed clear and continuous ACL fibers on magnetic resonance imaging scans (control group). PTS and ATT were measured on preoperative weightbearing whole leg lateral radiographs and compared between the groups. The cutoff values of PTS and ATT for predicting primary ACLR failure were determined by the receiver operating characteristic curve. Moreover, predictors of primary ACLR failure were assessed by multivariate logistic regression analysis, including sex, age, body mass index, concomitant meniscal tears, degree of pivot-shift test, and KT-1000 arthrometer side-to-side difference, PTS, and ATT. Results: PTS and ATT values in the study group were significantly higher than those in the control group (mean ± SD: PTS, 17.2°± 2.2° vs 14.4°± 2.8°; ATT, 8.3 ± 3.4 mm vs 4.1 ± 3.1 mm; P < .001). The cutoff values of PTS and ATT for predicting primary ACLR failure were 17° (sensitivity, 66.7%; specificity, 90.9%) and 6 mm (sensitivity, 87.5%; specificity, 79.5%), respectively. Additionally, PTS ≥17° (odds ratio, 15.6; 95% CI, 2.7-91.5; P = .002) and ATT ≥6 mm (odds ratio, 9.9; 95% CI, 1.9-51.4; P = .006) were determined to be risk factors of primary ACLR failure, whereas sex, age, body mass index, concomitant meniscal tears, degree of the pivot-shift test, and KT-1000 arthrometer side-to-side difference were not. Conclusion: In this study, PTS ≥17° and ATT ≥6 mm, as measured on weightbearing whole leg radiographs, were identified to be predictive risk factors of primary ACLR failure. This study adds to the existing knowledge about potential surgical indications of simultaneous slope-reducing high tibial osteotomy to mitigate the primary ACLR failure rate.

2021 ◽  
pp. 036354652110188
Author(s):  
Guan-yang Song ◽  
Qian-kun Ni ◽  
Tong Zheng ◽  
Hua Feng ◽  
Zhi-jun Zhang ◽  
...  

Background: Increased posterior tibial slope (PTS) has been reported to be associated with irreducible anterior tibial subluxation in extension after anatomic anterior cruciate ligament (ACL) reconstruction (ACLR), which raises concerns about the greater risk of graft roof impingement (GRI) although the tibial tunnel is positioned anatomically. Hypothesis: Increased PTS would be associated with greater risk of GRI after anatomic ACLR. Study Design: Case-control study; Level of evidence, 3. Methods: Between January 2016 and December 2017, a total of 418 consecutive patients were diagnosed as having noncontact ACL injuries and underwent primary anatomic ACLR. Among them, 26 patients had ≥1 of the following features during the second-look arthroscopy: fractured/guillotined bundles at the tibial insertion or cyclops lesion. These patients were confirmed to have GRI and were allocated to the study group. They were also matched 1:2 to 52 control participants without GRI. PTS was measured on true lateral whole-leg radiographs. Intra-articular ACL graft signal intensity was evaluated on postoperative magnetic resonance imaging scans (mean, 32.8 months; range, 26-38 months) and divided into 3 grades (I, good; II, moderate; III, poor) based on degree of GRI. Moreover, anterior subluxation of the lateral compartment (ASLC) and medial compartment (ASMC) in extension relative to the femoral condyles were measured on postoperative magnetic resonance imaging scans and compared between the groups. In addition, predictors of GRI were evaluated using multivariate logistic regression analysis and included body mass index, PTS, pivot-shift test, KT-1000 side-to-side difference, and concomitant meniscal tears. Results: PTS in the study group was significantly higher than that in control group (mean ± SD, 13.8°± 1.5° vs 9.5°± 1.8°; P < .05). In the study group (n = 26), patients with grade III (poor) graft signal intensity (n = 9) showed significantly higher PTS than those with grade II (moderate; n = 17) (16.4°± 1.7° vs 12.4°± 1.3°; P < .05). Moreover, the mean postoperative ASLC and ASMC in extension were significantly larger in the study group than the control group (ASLC, 4.1 ± 1.3 vs 0.8 ± 0.4 mm; ASMC, 4.3 ± 1.5 vs 0.9 ± 0.3 mm; P < .05). Furthermore, the abnormal degree of PTS (≥12°) was determined to be an independent risk factor associated with GRI after anatomic ACLR (odds ratio, 9.0 [95% CI, 3.7-30.2]; P < .001), whereas body mass index, grade of pivot-shift test, KT-1000 side-to-side difference, and concomitant meniscal tears were not. Conclusion: Increased PTS (≥12°) was associated with greater risk of GRI after anatomic ACLR. This may provide additional information for counseling patients with greater risk of GRI.


2019 ◽  
Vol 47 (10) ◽  
pp. 2420-2426 ◽  
Author(s):  
Sandro Hodel ◽  
Method Kabelitz ◽  
Timo Tondelli ◽  
Lazaros Vlachopoulos ◽  
Reto Sutter ◽  
...  

Background: The asymmetry of the medial and lateral knee compartments contributes significantly to femorotibial biomechanics and pivoting, and it is reported to be a relevant risk factor for an anterior cruciate ligament (ACL) injury. Purpose: (1) To assess the role of femoral condyle sphericity as a risk factor for an ACL rupture and rerupture. (2) To compare the new risk factor with existing bony morphological risk factors via magnetic resonance imaging (MRI) and to assess the most predictive risk factor for an ACL rupture. Study Design: Cohort study; Level of evidence, 3. Methods: A retrospective case-control study of 60 patients was conducted. Three age- and sex-matched cohorts (each n = 20) were analyzed: ACL reruptures, primary ACL ruptures, and a control group consisting of isolated meniscal tears or patients with anterior knee pain without signs of trochlear dysplasia. The lateral femoral condyle index (LFCI) as a novel MRI measurement was developed to quantify femoral sphericity. In addition, previously known MRI risk factors associated with ACL injury were analyzed (notch width index, medial tibial slope, lateral tibial slope, medial tibial depth, and lateral tibial height). Differences among groups were compared; cutoff values were defined; and diagnostic performance of the risk factors was assessed. The risk factors were subsequently analyzed with multiple logistic regression. Results: The LFCI was significantly smaller in knees with ACL reruptures (median, 0.67; range, 0.59-0.75) and primary ACL ruptures (0.67; range, 0.60-0.75) than in the control group (0.76; range, 0.6-0.81; P < .01). The LFCI yielded the highest area under the curve among the analyzed risk factors: 0.82 (95% CI, 0.7-0.9). A cutoff of 0.70 yielded a sensitivity of 78% and a specificity of 80% to predict an ACL rupture or rerupture (odds ratio, 13.79; 95% CI, 3.67-51.75). In combination with lateral tibial height (cutoff, 3.8 mm) and lateral tibial slope (cutoff, 2.9°), the diagnostic performance was improved. The area under the curve was 0.86 (95% CI, 0.75-0.94), with a sensitivity of 90% and a specificity of 70% (odds ratio, 21.00; 95% CI, 5.10-85.80). Conclusion: A decreased LFCI is associated with an ACL injury. The LFCI, lateral tibial height, and lateral tibial slope are the most predictive risk factors for an ACL injury. These findings might aid clinicians in identifying patients at risk for an ACL injury and inform the patient after reconstruction for a higher risk of rerupture.


2020 ◽  
Vol 48 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Guan-yang Song ◽  
Hui Zhang ◽  
Jin Zhang ◽  
Zhi-jun Zhang ◽  
Tong Zheng ◽  
...  

Background: Anterior tibial subluxation (ATS) in extension after anterior cruciate ligament (ACL) injury highlights an increased anterior position of the tibia relative to the femur. Recent studies demonstrated that subluxation is sometimes irreducible and the normal tibiofemoral relationship is not restored by ACL reconstruction (ACLR), which raises concerns regarding clinical outcomes after ACLR. Hypothesis: Excessive preoperative ATS in extension is associated with inferior knee stability after anatomic ACLR. Study Design: Cohort study; Level of evidence, 3. Methods: From March 2016 to January 2017, a total of 487 consecutive patients with clinically diagnosed noncontact ACL injuries who underwent primary anatomic ACLR were retrospectively analyzed. Of these patients, 430 met the criteria for inclusion in this study. Anterior subluxation of the lateral and medial compartments (ASLC and ASMC) in extension relative to the femoral condyles was measured on preoperative magnetic resonance imaging. Twenty patients (study group) who demonstrated excessive (>10 mm) ASLC and ASMC in extension were matched 1:2 to 40 participants (control group) who showed minimal or no (<3 mm) ASLC and ASMC in extension. The amount of ASLC and ASMC in extension relative to the femoral condyles at 2 years postoperatively was the primary outcome. Moreover, the Lysholm score, IKDC grade (International Knee Documentation Committee), and stability assessments (pivot-shift test and KT-1000 arthrometer side-to-side difference) were evaluated preoperatively and at the last follow-up visit. Results: The preoperative mean ASLC and ASMC in extension of the study group were both significantly larger than those of the control group (study group vs control group: ASLC, 13.5 mm vs 1.2 mm; ASMC, 12.4 mm vs 1.0 mm; P < .05). Moreover, patients in the study group showed significantly larger posterior tibial slope than the patients in the control group (17.8°± 2.5° vs 9.5°± 1.5°; P < .05). At the final follow-up visit, the mean ASLC and ASMC of the study group were 8.1 mm and 7.3 mm, which were significantly larger than those of the control group (ASLC, 0.9 mm; ASMC, 0.7 mm; P < .05). In addition, the study group showed inferior knee stability when compared with the control group in terms of both the pivot-shift test (study group vs control group: 2 grade 2, 10 grade 1, and 8 grade 0 vs 1 grade 1 and 39 grade 0; P < .05) and the KT-1000 arthrometer side-to-side difference (study group vs control group: 4.4 ± 1.2 mm vs 1.5 ± 0.6 mm; P < .05). Furthermore, the study group showed significantly lower mean Lysholm score (study group vs control group: 80.3 ± 6.3 vs 93.3 ± 4.3, P < .05) and IKDC grading results (study group vs control group: 3 grade C, 16 grade B, and 1 grade A vs 3 grade B and 37 grade A; P < .05) as compared with the control group. Conclusion: In this short-term study, the excessive (>10 mm) preoperative ATS in extension after ACL injury was associated with inferior knee stability after anatomic ACLR.


2022 ◽  
Vol 30 (1) ◽  
pp. 230949902110696
Author(s):  
Necip GÜVEN ◽  
Sezai ÖZKAN ◽  
Tulin TURKOZU ◽  
Adem YOKUS ◽  
Cihan ADANAS ◽  
...  

Purpose Many factors in the etiology of anterior cruciate ligament (ACL) tears, predisposing factors related to knee morphology have also been reported. This study aimed to determine whether the Insall–Salvati (IS) index, which measures patella height, is a predisposing risk factor for ACL tears. Methods The IS index, patellar length (PL), and patellar tendon length (PTL) values of patients (study group) that underwent arthroscopic reconstruction for ACL tears obtained by preoperative magnetic resonance imaging (MRI) were compared with the index values in the preoperative MRIs of patients that underwent knee arthroscopy for reasons besides ACL tears. In addition, the anterior tibial translation (ATT) of both groups was also measured and compared on MRI images. The MRI findings of the subjects included in both study groups were arthroscopically confirmed. Results The mean ages of the study group (n = 120) and control group (n = 90) were 29.1 ± 8.2 years and 31.8 ± 9.8 years, respectively. There was a statistically significant difference between the study and control groups in terms of the PL and PTL values ( p = 0.016 and p = 0.001, respectively). The IS index was statistically significantly higher in the study group with ACL tears ( p = 0.009). The ATT was 8.61 ± 4.68 mm in the study group and 3.80 ± 1.92 mm in the control group. The ATT results of both groups were evaluated, and it was found that the study group was significantly higher than the control group ( p = 0.001) Conclusions As a result of our current study, we observed higher IS index values in patients with ACL tears than in patients without ACL tears. It should be kept in mind that patella alta, which is associated with a high IS index as one of the factors of knee morphology associated with ACL tears, may play a role in the etiology of ACL tears.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
M.J.M Zee ◽  
M.N.J Keizer ◽  
L Dijkerman ◽  
J.J.A.M van Raaij ◽  
J.M. Hijmans ◽  
...  

Abstract Purpose The amount of passive anterior tibial translation (ATT) is known to be correlated to the amount of posterior tibial slope (PTS) in both anterior cruciate ligament-deficient and reconstructed knees. Slope-altering osteotomies are advised when graft failure after anterior cruciate ligament (ACL) reconstruction occurs in the presence of high PTS. This recommendation is based on studies neglecting the influence of muscle activation. On the other hand, if dynamic range of tibial rotation (rTR) is related to the amount of PTS, a “simple” anterior closing-wedge osteotomy might not be sufficient to control for tibial rotation. The purpose of this study was to evaluate the correlation between the amount of PTS and dynamic ATT and tibial rotation during high demanding activities, both before and after ACL reconstruction. We hypothesized that both ATT and rTR are strongly correlated to the amount of PTS. Methods Ten subjects were studied both within three months after ACL injury and one year after ACL reconstruction. Dynamic ATT and dynamic rTR were measured using a motion-capture system during level walking, during a single-leg hop for distance and during a side jump. Both medial and lateral PTS were measured on MRI. A difference between medial and lateral PTS was calculated and referred to as Δ PTS. Spearman’s correlation coefficients were calculated for the correlation between medial PTS, lateral PTS and Δ PTS and ATT and between medial PTS, lateral PTS and Δ PTS and rTR. Results Little (if any) to weak correlations were found between medial, lateral and Δ PTS and dynamic ATT both before and after ACL reconstruction. On the other hand, a moderate-to-strong correlation was found between medial PTS, lateral PTS and Δ PTS and dynamic rTR one year after ACL reconstruction. Conclusion During high-demand tasks, dynamic ATT is not correlated to PTS. A compensation mechanism may be responsible for the difference between passive and dynamic ATT in terms of the correlation to PTS. A moderate-to-strong correlation between amount of PTS and rTR indicates that such a compensation mechanism may fall short in correcting for rTR. These findings warrant prudence in the use of a pure anterior closing wedge osteotomy in ACL reconstruction. Trial registration Netherlands Trial Register, Trial 7686. Registered 16 April 2016—Retrospectively registered. Level of evidence Level 2, prospective cohort study


Author(s):  
Georg Mattiassich ◽  
Reinhold Ortmaier ◽  
Harald Kindermann ◽  
Jürgen Barthofer ◽  
Imre Vasvary ◽  
...  

Abstract Background Anterior cruciate ligament (ACL) injury can lead to reduced function, meniscal lesions, and early joint degeneration. Preservation of a torn ACL using the Internal Brace technique might re-establish normal knee kinematics, avoid donor-site morbidity due to tendon harvesting, and potentially maintain proprioception of the knee. Methods Fifty subjects were recruited for this study between December 2015 and October 2016. Two groups of individuals who sustained a unilateral ACL rupture were included: those who underwent surgery with preservation of the injured ACL (Internal Brace technique; IB) and those who underwent ACL reconstruction using a hamstring tendon graft (all-inside technique; AI). Subjective self-administered scores were used: the German version of the IKDC Subjective Knee Form (International Knee Documentation Committee), the German version of the WOMAC (Western Ontario and McMaster Universities Arthritis Index), SF-36 (short form), the German version of the KOOS (Knee Osteoarthritis Outcome Score), and the German version of themodified Lysholm Score by Lysholm and Gillquist. Anterior tibial translation was assessed using the KT-1000 Arthrometer (KT-1000 Knee Ligament Arthrometer, MEDmetric Corp., San Diego, CA, USA). Magnetic resonance evaluation was performed in all cases. Results Twenty-three subjects (46 %) were men, and the mean age was 34.7 years. The objective IKDC scores were “normal” in 15 and 14 patients, “nearly normal” in 11 and 7 patients, and “abnormal” in 1 and 2 patients, in the IB and AI groups, respectively. KT-1000 assessment showed a sideto-side difference of more than 3 mm on maximum manual testing in 11 (44 %) and 6 subjects (28.6 %) in the IB and AI groups, respectively. In the postoperative MRI, 20 (74 %) and 22 subjects (96 %) in the IB and AI groups had an intact ACL. Anterior tibial translation was significantly higher in the IB group compared with the AI group in the manual maximum test. Conclusions Preservation of the native ACL with the Internal Brace primary repair technique can achieve comparable results to ACL reconstruction using Hamstring autografts over a short term. Clinically relevant limitations such as a higher incidence of pathologic laxity, with patients more prone to pivot-shift phenomenon were observed during the study period.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuki Asai ◽  
Junsuke Nakase ◽  
Rikuto Yoshimizu ◽  
Mitsuhiro Kimura ◽  
Hiroyuki Tsuchiya

Abstract Purpose This study aimed to evaluate the excessive anterior tibial translation (ATT) and muscle strength of patients with ramp lesions. We hypothesised that the higher ATT, lower hamstring-to-quadriceps (HQ) ratio, and higher flexion peak torque influenced by semimembranosus would be associated with ramp lesions. Methods One hundred and twenty-one patients who underwent anterior cruciate ligament (ACL) reconstruction were retrospectively evaluated. Clinical evaluation included ATT of the contralateral uninjured limb measured using a KT-1000 arthrometer, the knee flexor and extensor muscle strength of the contralateral uninjured limb at 60°/s and 180°/s of an angular velocity measured using an isokinetic dynamometer, and HQ ratio at 60°/s and 180°/s during the preoperative state. Binary stepwise logistic regression analysis was performed to evaluate the risk factors of ramp lesions. Results Ramp lesions were found in 27 cases of ACL injuries (27/121, 22.3%). Male sex (odds ratio [OR], 2.913; 95% confidence interval [CI], 1.090–7.787; P = 0.033), longer time between injury to surgery (OR, 2.225; 95% CI, 1.074–4.608; P = 0.031), and higher ATT in the contralateral uninjured limb (OR, 1.502; 95% CI, 1.046–2.159; P = 0.028) were indicated as the independent risk factors of the presence of ramp lesion associated with an ACL injury. Conclusions Male sex, longer period from injury to surgery, and higher ATT in the contralateral uninjured limb were significantly associated with ramp lesion. These findings are advantageous for identifying patients with a greater risk of developing a ramp lesion with an ACL injury in the clinical setting. Level of evidence Level IV


2020 ◽  
Author(s):  
Georg Mattiassich ◽  
Reinhold Ortmaier ◽  
Harald Kindermann ◽  
Jürgen Barthofer ◽  
Imre Vasvary ◽  
...  

Abstract Background Anterior cruciate ligament (ACL) injury can lead to reduced function, meniscal lesions, and early joint degeneration. Preservation of a torn ACL using the Internal Brace® technique might re-establish normal knee kinematics, avoid donor-site morbidity due to tendon harvesting, and potentially maintain proprioception of the knee. Methods Fifty subjects were recruited for this study between December 2015 and October 2016. Two groups of individuals who sustained unilateral ACL rupture were included: those who underwent surgery with preservation of the injured ACL (Internal Brace® technique; IB) and those who underwent ACL reconstruction using a hamstring tendon graft (all-inside technique; AI). Subjective self-administered scores were used: the German Version of the IKDC Subjective Knee Form (International Knee Documentation Committee), the German Version of the WOMAC (Western Ontario and McMaster Universities Arthritis Index), SF-36 (short form), the German Version of the KOOS (Knee Osteoarthritis Outcome Score), and the German Version of the modified Lysholm-score by Lysholm and Gillquist. Anterior tibial translation was assessed using the KT-1000 arthrometer® (KT-1000 Knee Ligament Arthrometer, MEDmetric Corp., San Diego, CA, USA). Magnetic resonance evaluation was performed in all cases. Results Twenty-three subjects (46%) were men, and the mean age was 34.7 years. The objective IKDC scores were “normal” in 15 and 14 patients, “nearly normal” in 11 and 7 patients, and “abnormal” in 1 and 2 patients, in the IB and AI groups, respectively. KT-1000 assessment showed a side-to-side difference of more than 3 mm on maximum manual testing in 11 (44%) and 6 subjects (28.6%) in the IB and AI groups, respectively. In the postoperative MRI, 20 (74%) and 22 subjects (96%) in the IB and AI groups showed an intact ACL. Anterior tibial translation was significantly higher in the IB group compared to the AI group in the manual maximum test. Conclusions Preservation of the native ACL with the Internal Brace ® primary repair technique can achieve comparable results to ACL reconstruction using Hamstring autografts over a short term. Clinically relevant limitations such as a higher incidence of pathologic laxity, with patients more prone to pivot shift phenomenon were observed during the study period.


2019 ◽  
Vol 47 (14) ◽  
pp. 3373-3380 ◽  
Author(s):  
Mai Katakura ◽  
Hideyuki Koga ◽  
Tomomasa Nakamura ◽  
Daisuke Araki ◽  
Kanto Nagai ◽  
...  

Background: Recently reported anterolateral structure reconstructions (ALSRs) to augment intra-articular anterior cruciate ligament reconstruction (ACLR) use various femoral attachment sites, and their biomechanical effects are still unknown. Hypothesis: ALSR concomitant with ACLR would control anterolateral rotational instability better than ACLR alone, and if ALSR had different femoral attachment sites, there would be different effects on its control of anterolateral rotational instability. Study Design: Controlled laboratory study. Methods: Twelve fresh-frozen hemipelvis lower limbs were included. Anterior tibial translation during the Lachman test and tibial acceleration during the pivot-shift test were measured with a 3-dimensional electromagnetic measurement system in situations with the (1) ACL and ALS intact, (2) ACL and ALS cut, (3) ALSR without ACLR (ALSR alone), (4) ACLR without ALSR (ACLR alone), and (5) ALSR with ACLR. Three femoral attachment sites were used for ALSR: F1, 2 mm anterior and 2 mm distal to the lateral epicondyle; F2, 4 mm posterior and 8 mm proximal to the lateral epicondyle; and F3, over-the-top position for the lateral extra-articular tenodesis. The Steel test and Wilcoxon signed rank test were used for statistical analysis. Results: Anterior tibial translation during the Lachman test in the ACL and ALS–cut state was significantly larger than it was in the ACL and ALS–intact state, while its difference disappeared after ACLR. As for the pivot-shift test, additional ALSR with F2 to ACLR significantly decreased the acceleration ( P = .046), although additional ALSR with F1 and F3 showed no significant effect. Conclusion: ALSR with the femoral attachment site 4 mm posterior and 8 mm proximal to the lateral epicondyle in addition to ACLR played a role in reducing anterolateral rotational instability the most effectively among the measured attachment sites. Clinical Relevance: The present data will contribute to determine the appropriate femoral attachment site for ALSR to better control anterolateral rotational instability after ACL reconstruction.


Sign in / Sign up

Export Citation Format

Share Document