scholarly journals Quadriceps Strength Symmetry Does Not Modify Gait Mechanics After Anterior Cruciate Ligament Reconstruction, Rehabilitation, and Return-to-Sport Training

2020 ◽  
pp. 036354652098007
Author(s):  
Elanna K. Arhos ◽  
Jacob J. Capin ◽  
Thomas S. Buchanan ◽  
Lynn Snyder-Mackler

Background: After anterior cruciate ligament (ACL) reconstruction (ACLR), biomechanical asymmetries during gait are highly prevalent, persistent, and linked to posttraumatic knee osteoarthritis. Quadriceps strength is an important clinical measure associated with preoperative gait asymmetries and postoperative function and is a primary criterion for return-to-sport clearance. Evidence relating symmetry in quadriceps strength with gait biomechanics is limited to preoperative and early rehabilitation time points before return-to-sport training. Purpose/Hypothesis: The purpose was to determine the relationship between symmetry in isometric quadriceps strength and gait biomechanics after return-to-sport training in athletes after ACLR. We hypothesized that as quadriceps strength symmetry increases, athletes will demonstrate more symmetric knee joint biomechanics, including tibiofemoral joint loading during gait. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Of 79 athletes enrolled in the ACL-SPORTS Trial, 76 were participants in this study after completing postoperative rehabilitation and 10 return-to-sport training sessions (mean ± SD, 7.1 ± 2.0 months after ACLR). All participants completed biomechanical walking gait analysis and isometric quadriceps strength assessment using an electromechanical dynamometer. Quadriceps strength was calculated using a limb symmetry index (involved limb value / uninvolved limb value × 100). The biomechanical variables of interest included peak knee flexion angle, peak knee internal extension moment, sagittal plane knee excursion at weight acceptance and midstance, quadriceps muscle force at peak knee flexion angle, and peak medial compartment contact force. Spearman rank correlation (ρ) coefficients were used to determine the relationship between limb symmetry indexes in quadriceps strength and each biomechanical variable; alpha was set to .05. Results: Of the 76 participants, 27 (35%) demonstrated asymmetries in quadriceps strength, defined by quadriceps strength symmetry <90% (n = 23) or >110% (n = 4) (range, 56.9%-131.7%). For the biomechanical variables of interest, 67% demonstrated asymmetry in peak knee flexion angle; 68% and 83% in knee excursion during weight acceptance and midstance, respectively; 74% in internal peak knee extension moment; 57% in medial compartment contact force; and 74% in quadriceps muscle force. There were no significant correlations between quadriceps strength index and limb symmetry indexes for any biomechanical variable after return-to-sport training ( P > .129). Conclusion: Among those who completed return-to-sport training after ACLR, subsequent quadriceps strength symmetry was not correlated with the persistent asymmetries in gait biomechanics. After a threshold of quadriceps strength is reached, restoring strength alone may not ameliorate gait asymmetries, and current clinical interventions and return-to-sport training may not adequately target gait.

2017 ◽  
Vol 52 (9) ◽  
pp. 847-860 ◽  
Author(s):  
Lindsay V. Slater ◽  
Joseph M. Hart ◽  
Adam R. Kelly ◽  
Christopher M. Kuenze

Context:  Anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) result in persistent alterations in lower extremity movement patterns. The progression of lower extremity biomechanics from the time of injury has not been described. Objective:  To compare the 3-dimensional (3D) lower extremity kinematics and kinetics of walking among individuals with ACL deficiency (ACLD), individuals with ACLR, and healthy control participants from 3 to 64 months after ACLR. Data Sources:  We searched PubMed and Web of Science from 1970 through 2013. Study Selection and Data Extraction:  We selected only articles that provided peak kinematic and kinetic values during walking in individuals with ACLD or ACLR and comparison with a healthy control group or the contralateral uninjured limb. Data Synthesis:  A total of 27 of 511 identified studies were included. Weighted means, pooled standard deviations, and 95% confidence intervals were calculated for the healthy control, ACLD, and ACLR groups at each reported time since surgery. The magnitude of between-groups (ACLR versus ACLD, control, or contralateral limb) differences at each time point was evaluated using Cohen d effect sizes and associated 95% confidence intervals. Peak knee-flexion angle (Cohen d = −0.41) and external knee-extensor moment (Cohen d = −0.68) were smaller in the ACLD than in the healthy control group. Peak knee-flexion angle (Cohen d range = −0.78 to −1.23) and external knee-extensor moment (Cohen d range = −1.39 to −2.16) were smaller in the ACLR group from 10 to 40 months after ACLR. Reductions in external knee-adduction moment (Cohen d range = −0.50 to −1.23) were present from 9 to 42 months after ACLR. Conclusions:  Reductions in peak knee-flexion angle, external knee-flexion moment, and external knee-adduction moment were present in the ACLD and ACLR groups. This movement profile during the loading phase of gait has been linked to knee-cartilage degeneration and may contribute to the development of osteoarthritis after ACLR.


2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Stefano Ghirardelli ◽  
Jessica L. Asay ◽  
Erika A. Leonardi ◽  
Tommaso Amoroso ◽  
Thomas P. Andriacchi ◽  
...  

Background: This study compares knee kinematics in two groups of patients who have undergone primary total knee arthroplasty (TKA) using two different modern designs: medially congruent (MC) and posterior-stabilized (PS). The aim of the study is to demonstrate only minimal differences between the groups. Methods: Ten TKA patients (4 PS, 6 MC) with successful clinical outcomes were evaluated through 3D knee kinematics analysis performed using a multicamera optoelectronic system and a force platform. Extracted kinematic data included knee flexion angle at heel-strike (KFH), peak midstance knee flexion angle (MSKFA), maximum and minimum knee adduction angle (KAA), and knee rotational angle at heel-strike. Data were compared with a group of healthy controls. Results: There were no differences in preferred walking speed between MC and PS groups, but we found consistent differences in knee function. At heel-strike, the knee tended to be more flexed in the PS group compared to the MC group; the MSKFA tended to be higher in the PS group compared to the MC group. There was a significant fluctuation in KAA during the swing phase in the PS group compared to the MC group, PS patients showed a higher peak knee flexion moment compared to MC patients, and the PS group had significantly less peak internal rotation moments than the MC group. Conclusions: Modern, third-generation TKA designs failed to reproduce normal knee kinematics. MC knees tended to reproduce a more natural kinematic pattern at heel-strike and during axial rotation, while PS knees showed better kinematics during mid-flexion.


Author(s):  
Ditaruni Asrina Utami

ABSTRACTBackground: Anterior cruciate ligament (ACL) injury cause great disability for athlete. Recent focus of ACL injury management is on prevention by identifying the risk factors. Most of basketball injury mechanism is non-contact, related to landing process with small knee flexion angle. Muscle activation and its ratio, which control movement pattern in sagittal plane, are said to play a role in dynamic movement such as landing.Aims: The purpose of this study is to analyze the correlation between muscles activation and their activation ratio of quadriceps, hamstring, tibialis anterior and gastrocnemius with knee flexion angle of basketball athlete while performing double-leg landing task.Material and methods: This study was an observational analytic, cross sectional study. Study subjects was basketball athletes age 16 – 25 years in Surabaya. Measurements of knee flexion angle done with digital measurements of reflective marker, and muscle activation was measured with sEMG while performing double-leg landing task.Result: There was no significant correlation between maximum knee flexion angle and muscle activation of quadriceps (p=0,562), hamstring (p=0,918), tibialis anterior (p=0,394) and gastrocnemius (p=0,419). There was also no significant correlation between maximum knee flexion angle and the muscle activation ratio of quadriceps-hamstring (p=0,347), quadriceps-tibialis (p=0,139), quadriceps-gastrocnemius (p=0,626), hamstring-tibialis anterior (p=0,365), hamstring-gastrocnemius (p=0,867), and tibialis anterior-gastrocnemius (p=0,109).Conclusions: There was no correlation between muscle activation and muscle activation ratio of quadriceps, hamstring, tibialis anterior and gastrocnemius with maximum knee flexion angle in basketball athlete while performing double-leg landing task.


2020 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
Ditaruni Asrina Utami

ABSTRACTBackground: Anterior cruciate ligament (ACL) injury cause great disability for athlete. Recent focus of ACL injury management is on prevention by identifying the risk factors. Most of basketball injury mechanism is non-contact, related to landing process with small knee flexion angle. Muscle activation and its ratio, which control movement pattern in sagittal plane, are said to play a role in dynamic movement such as landing.Aims: The purpose of this study is to analyze the correlation between muscles activation and their activation ratio of quadriceps, hamstring, tibialis anterior and gastrocnemius with knee flexion angle of basketball athlete while performing double-leg landing task.Material and methods: This study was an observational analytic, cross sectional study. Study subjects was basketball athletes age 16 – 25 years in Surabaya. Measurements of knee flexion angle done with digital measurements of reflective marker, and muscle activation was measured with sEMG while performing double-leg landing task.Result: There was no significant correlation between maximum knee flexion angle and muscle activation of quadriceps (p=0,562), hamstring (p=0,918), tibialis anterior (p=0,394) and gastrocnemius (p=0,419). There was also no significant correlation between maximum knee flexion angle and the muscle activation ratio of quadriceps-hamstring (p=0,347), quadriceps-tibialis (p=0,139), quadriceps-gastrocnemius (p=0,626), hamstring-tibialis anterior (p=0,365), hamstring-gastrocnemius (p=0,867), and tibialis anterior-gastrocnemius (p=0,109).Conclusions: There was no correlation between muscle activation and muscle activation ratio of quadriceps, hamstring, tibialis anterior and gastrocnemius with maximum knee flexion angle in basketball athlete while performing double-leg landing task.


2020 ◽  
Vol 41 (06) ◽  
pp. 412-418
Author(s):  
Molly Kujawa ◽  
Aleyna Goerlitz ◽  
Drew Rutherford ◽  
Thomas W. Kernozek

AbstractPatellofemoral joint (PFJ) pain syndrome is a commonly reported form of pain in female runners and military personnel. Increased PFJ stress may be a contributing factor. Few studies have examined PFJ stress running with added load. Our purpose was to analyze PFJ stress, PFJ reaction force, quadriceps force, knee flexion angle, and other kinematic and temporospatial variables running with and without a 9 kg load. Nineteen females ran across a force platform with no added load and 9.0 kg weight vest. Kinematic data were collected using 3D motion capture and kinetic data with a force platform. Muscle forces were estimated using a musculoskeletal model, and peak PFJ loading variables were calculated during stance. Multivariate analyses were run on PFJ loading variables and on cadence, step length and foot strike index. Differences were shown in PFJ stress, PFJ reaction force, peak knee flexion angle and quadriceps force. Joint specific kinetic variables increased between 5–16% with added load. PFJ loading variables increased with 9 kg of added load without changes in cadence, step length, or foot strike index compared to no load. Added load appears to increase the PFJ loading variables associated with PFJ pain in running.


1996 ◽  
Vol 118 (2) ◽  
pp. 227-239 ◽  
Author(s):  
Bruce Beynnon ◽  
Jun Yu ◽  
Dryver Huston ◽  
Braden Fleming ◽  
Robert Johnson ◽  
...  

In this investigation the complex multi-bundle structure of the cruciate ligaments and their interaction with the tibiofemoral joint was modeled analytically by representing the different regions of the cruciates with ligament elements. A sensitivity analysis was then performed to describe the effect that variations of the model input parameters had on the model variables (outputs). The effect that the cruciate ligament bundles had in controlling joint kinematics was dependent on knee flexion angle, and the load applied to the tibiofemoral joint. For passive range of knee motion with the thigh in the horizontal plane (a common rehabilitation activity), all cruciate ligament bundles were strained with the joint positioned between 0 and 10 deg of knee flexion, between 10 and 50 deg only the anterior bundle of the posterior cruciate ligament A-PCL was strained, and from 50 to 90 deg both the anteromedial portion of the anterior cruciate ligament A-ACL and the A-PCL were strained. This finding indicates that a strain distribution about a transverse cross section of the cruciates exists, and demonstrates the importance of differentiating between the strained and unstrained (unloaded) states of these ligaments. The strain value of a cruciate ligament bundle was an indication of how the bundle controls joint kinematics, while the unstrained values describe how much the ligament bundle must deform before it becomes strained and a restraint to tibiofemoral joint motion. In response to anterior and posterior directed loads, applied parallel to the tibial plateau, the respective ACL and PCL load values were larger in magnitude. The sensitivity of the model outputs to the input parameters was highly dependent on knee flexion angle. The geometrical input parameters of the model (including the ligament insertion site locations and articular surface geometry) had the most pronounced effect on the model output quantities, while the stiffness and initial strain conditions of the ligament bundles had less of an effect on the model outputs. When loaded, the strain values of the ligament bundles were sensitive to the ligament insertion site position. The greatest sensitivity of the model outputs was the femoral insertion of the ACL; supporting clinical impressions and previous experimental findings. Changes in the anterior-posterior dimension of the femoral articular surface did not produce a substantial effect on the model outputs, while changes in the proximal-distal dimension created a large effect; similar results were found for the tibial surface dimensions. These findings indicate that rigid body contact between the articular surfaces may not be a realistic assumption particularly with application to the prediction of tibiofemoral compressive loading and the force/strain values of the cruciate ligament elements. This also has important implications for the design and clinical application of total knee replacements (that function as rigid bodies), particularly those that spare the PCL.


1998 ◽  
Vol 26 (3) ◽  
pp. 395-401 ◽  
Author(s):  
Ross J. Fox ◽  
Christopher D. Harner ◽  
Masataka Sakane ◽  
Gregory J. Carlin ◽  
Savio L-Y. Woo

We examined the in situ forces in the posterior cruciate ligament as well as the force distribution between its anterolateral and posteromedial bundles. Using a robotic manipulator in conjunction with a universal force-moment sensor system, we applied posterior tibial loads from 22 to 110 N to the joint at 0° to 90° of knee flexion. The magnitude of the in situ force in the posterior cruciate ligament and its bundles was significantly affected by knee flexion angle and posterior tibial loading. In situ forces in the posterior cruciate ligament ranged from 6.1 6.0 N under a 22-N posterior tibial load at 0° of knee flexion to 112.3 28.5 N under a 110-N load at 90°. The force in the posteromedial bundle reached a maximum of 67.9 31.5 N at 90° of knee flexion, and the force in the anterolateral bundle reached a maximum of 47.8 23.0 N at 60° of knee flexion under a 110-N load. No significant differences existed between the in situ forces in the two bundles at any knee flexion angle. This study provides insight into the knee flexion angle at which each bundle of the posterior cruciate ligament experiences the highest in situ forces under posterior tibial loading. This information can help guide us in more accurate graft placement, fixation, and tensioning, and serve as an assessment of graft performance.


Sign in / Sign up

Export Citation Format

Share Document