Optimization of Injection Molding Process for Mechanical Properties of Short Glass Fiber and Polytetrafluoroethylene Reinforced Polycarbonate Composites: A Case Study

2006 ◽  
Vol 25 (12) ◽  
pp. 1279-1290 ◽  
Author(s):  
Yung-Kuang Yang
Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1569
Author(s):  
Selim Mrzljak ◽  
Alexander Delp ◽  
André Schlink ◽  
Jan-Christoph Zarges ◽  
Daniel Hülsbusch ◽  
...  

Short glass fiber reinforced plastics (SGFRP) offer superior mechanical properties compared to polymers, while still also enabling almost unlimited geometric variations of components at large-scale production. PA6-GF30 represents one of the most used SGFRP for series components, but the impact of injection molding process parameters on the fatigue properties is still insufficiently investigated. In this study, various injection molding parameter configurations were investigated on PA6-GF30. To take the significant frequency dependency into account, tension–tension fatigue tests were performed using multiple amplitude tests, considering surface temperature-adjusted frequency to limit self-heating. The frequency adjustment leads to shorter testing durations as well as up to 20% higher lifetime under fatigue loading. A higher melt temperature and volume flow rate during injection molding lead to an increase of 16% regarding fatigue life. In situ Xray microtomography analysis revealed that this result was attributed to a stronger fiber alignment with larger fiber lengths in the flow direction. Using digital volume correlation, differences of up to 100% in local strain values at the same stress level for different injection molding process parameters were identified. The results prove that the injection molding parameters have a high influence on the fatigue properties and thus offer a large optimization potential, e.g., with regard to the component design.


2011 ◽  
Vol 284-286 ◽  
pp. 550-556 ◽  
Author(s):  
Ming Hsiung Ho ◽  
Pin Ning Wang ◽  
Chin Ping Fung

This study investigates the effect of various injection molding process parameters and fiber amount on buckling properties of Polybutylene Terephthalate (PBT)/short glass fiber composite. The buckling specimens were prepared under injection molding process. These forming parameters about filling time, melt temperature and mold temperature that govern injection molding process are discussed. The buckling properties of neat PBT, 15 wt%, and 30 wt% are obtained using two ends fixed fixture and computerized closed-loop server-hydraulic material testing system. The fracture surfaces are observed by scanning electron microscopy (SEM). The global buckling forces are raised when increased the fiber weight percentage of PBT. Also, the fracture mechanisms in PBT and short glass fiber matrix are fiber pullout in skin area and fiber broken at core area. It is found that the addition of short glass fiber can significantly strengthen neat PBT.


2017 ◽  
Vol 52 (12) ◽  
pp. 1633-1640 ◽  
Author(s):  
Ayman MM Abdelhaleem ◽  
M Megahed ◽  
D Saber

In this study, the fatigue behavior of recycled polypropylene reinforced with short glass fiber with different weight fractions (5 wt%, 10 wt%, 20 wt%, and 30 wt%) was compared to pure polypropylene under dry and wet conditions. The specimens were manufactured using injection molding process. The results show that addition of short glass fiber to recycled polypropylene resulted in increasing water uptake compared to pure polypropylene. However, flexural fatigue strength of recycled polypropylene reinforced with short glass fiber with 10 wt%, 20 wt%, and 30 wt% exhibits higher relative fatigue strength than pure polypropylene under dry and wet conditions. Fatigue strength increases with the increase in fiber contents increased in recycled polypropylene matrix.


Sign in / Sign up

Export Citation Format

Share Document