Thermal Vibration, Buckling and Dynamic Stability of Functionally Graded Cylindrical Shells Embedded in an Elastic Medium

2007 ◽  
Vol 27 (2) ◽  
pp. 117-134 ◽  
Author(s):  
G.G. Sheng ◽  
X. Wang
2018 ◽  
Vol 38 (6) ◽  
pp. 253-266
Author(s):  
Khuc Van Phu ◽  
Dao Huy Bich ◽  
Le Xuan Doan

The governing equations for analysing thermal vibration and dynamic buckling of eccentrically stiffened sandwich functionally graded cylindrical shells full filled with fluid and surrounded by elastic foundations in thermal environment are derived by using the classical shell theory, the geometrical nonlinearity in von Karman-Donnell sense, the smeared stiffener technique and Pasternak’s foundation model. Solutions of the problem are established according to the Galerkin’s method and Runge–Kutta method. The effects of fluid pressure, stiffeners, geometrical ratios, temperature and elastic foundation on the dynamic responses of shells are investigated.


2014 ◽  
Vol 333 (3) ◽  
pp. 801-817 ◽  
Author(s):  
Mohammad Ebrahim Torki ◽  
Mohammad Taghi Kazemi ◽  
Junuthula N. Reddy ◽  
Hassan Haddadpoud ◽  
Saeid Mahmoudkhani

2014 ◽  
Vol 79 ◽  
pp. 138-146 ◽  
Author(s):  
Mohammad Ebrahim Torki ◽  
Mohammad Taghi Kazemi ◽  
Hassan Haddadpour ◽  
Saeed Mahmoudkhani

2020 ◽  
Vol 10 (4) ◽  
pp. 1345 ◽  
Author(s):  
Farshid Allahkarami ◽  
Hasan Tohidi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

This paper investigates the dynamic buckling of bi-directional (BD) functionally graded (FG) porous cylindrical shells for various boundary conditions, where the FG material is modeled by means of power law functions with even and uneven porosity distributions of ceramic and metal phases. The third-order shear deformation theory (TSDT) is adopted to derive the governing equations of the problem via the Hamilton’s principle. The generalized differential quadrature (GDQ) method is applied together with the Bolotin scheme as numerical strategy to solve the problem, and to draw the dynamic instability region (DIR) of the structure. A large parametric study examines the effect of different boundary conditions at the extremities of the cylindrical shell, as well as the sensitivity of the dynamic stability to different thickness-to-radius ratios, length-to-radius ratios, transverse and longitudinal power indexes, porosity volume fractions, and elastic foundation constants. Based on results, the dynamic stability of BD-FG cylindrical shells can be controlled efficiently by selecting appropriate power indexes along the desired directions. Furthermore, the DIR is highly sensitive to the porosity distribution and to the extent of transverse and longitudinal power indexes. The numerical results could be of great interest for many practical applications, as civil, mechanical or aerospace engineering, as well as for energy devices or biomedical systems.


2018 ◽  
Vol 18 (12) ◽  
pp. 1850151 ◽  
Author(s):  
Yasin Heydarpour ◽  
Parviz Malekzadeh

The dynamic stability behavior of rotating functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells under combined static and periodic axial forces is investigated. The governing equations are derived based on the first-order shear deformation theory (FSDT) of shells. The initial mechanical stresses due to the steady state rotation of the shell are evaluated by solving the dynamic equilibrium equations. The equations of motion under different boundary conditions are discretized in the spatial domain and transformed into a system of Mathieu–Hill type equations using the differential quadrature method (DQM) together with the trigonometric series. The influences of both the initial mechanical stresses and Coriolis acceleration are considered. Then, the parametric resonance is analyzed and the dynamic instability regions are determined by employing the Bolotin’s first approximation. After validating the approach, the effects of rotational speed, Coriolis acceleration, carbon nanotubes (CNTs) distribution in the thickness direction, CNTs volume fraction, length and thickness-to-mean radius ratios on the principal dynamic instability regions are examined in detail.


Sign in / Sign up

Export Citation Format

Share Document