Compression moulding of sheet moulding compound: Modelling with computational fluid dynamics and validation

2015 ◽  
Vol 34 (6) ◽  
pp. 479-492 ◽  
Author(s):  
NE Jimmy Kluge ◽  
T Staffan Lundström ◽  
Lars G Westerberg ◽  
Kurt Olofsson
2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Bhaskara J.C. Babu ◽  
Sachin Waigaonkar ◽  
Amit Rajput

Abstract Sheet moulding compound (SMC) is a combination of glass fibers and filled polyester resin. It is processed by a compression moulding process and finds extensive applications in structural, automotive, electrical and electronic industries. The compression moulding process is characterized by the flow behavior of SMC under heat and pressure in the press mould. This paper is focused on the prediction of ideal processibility conditions of SMC. The qualitative aspect of a properly thickened (matured) moulding compound could be seen from its tack-free nature, which was quantitatively calibrated in terms of penetration depth, measured by a specially constructed softness indicator. The weight (wt)% of calcium carbonate (CaCO3) as filler, magnesium oxide (MgO) as thickener, graphite (C) and zinc stearate [Zn (C18H35O2)2] (ZnSt) as lubricants along with the maturation time (Tm) were selected as process variables. Taguchi’s scheme of experimental design was adapted to perform the experiments. It was found that the higher levels of MgO and CaCO3 were favorable for a good penetration depth as well as a reduced maturation time. We have also found that a penetration depth of at least 5 mm was required for achieving good processability conditions of SMC. An optimization study was under taken to find the right blend of additives and fillers, at their minimal weights and in the least possible maturation time, to achieve the desired processability. This study is particularly useful in a production run to make moulded parts from SMC.


2008 ◽  
Vol 32 ◽  
pp. 141-144
Author(s):  
Meng Hou ◽  
Lin Ye

The paper describes the manufacture of thin composite panels using high performance sheet moulding compound (SMC). Topics discussed within the paper include characterisation of curing and flow behaviour of SMC material, tooling design concept and determination of suitable processing conditions for compression moulding. A Full scale “Burst test” was carried out to evaluate the mechanical performance of SMC panels. The overall performance of the SMC panels was satisfactory with all panels failed beyond the specification value. The main failure mode was a through-thickness cracking. In addition, a geometrical non-linear numerical analysis was also carried out to investigate the stress distribution and deflection behaviour of SMC panel during “Burst testing”.


2021 ◽  
Author(s):  
Connie Cheng Qian ◽  
Abhaye Deshpande ◽  
Mona Jesri ◽  
Richard Groves ◽  
Neil Reynolds ◽  
...  

With a growing interest in the application of carbon fibre Sheet Moulding Compound (SMC), a number of commercial software packages have been developed for the simulation of compression moulding of SMC. While these packages adopt different algorithms and meshing strategies, the constitutive material model and processing control are usually adapted from injection moulding process simulation. Little has been done in the literature for assessing the capabilities of these software as design tools, and more importantly, validating the process simulation results using experimental data. This paper aims to provide an independent and comprehensive assessment of existing well-known process simulation software for SMC compression moulding. The selected software will be compared in terms of material models, and available processing settings in order to determine their robustness as a compression moulding design tool. The predictive accuracy of the software will also be assessed by comparing the compression force and filling patterns against the experimental data.


2014 ◽  
Vol 81 ◽  
pp. 1601-1607 ◽  
Author(s):  
Jens Wulfsberg ◽  
Axel Herrmann ◽  
Gerhard Ziegmann ◽  
Georg Lonsdorfer ◽  
Nicole Stöß ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document