The heavy metal leaching property and cementitious material preparation by treating municipal solid waste incineration fly ash through the molten salt process

2019 ◽  
Vol 38 (1) ◽  
pp. 27-34
Author(s):  
Peng Zhao ◽  
Minghai Jing ◽  
Lei Feng ◽  
Bai Min

This research investigated the heavy metal leaching property and cementitious material preparation by treating municipal solid waste incineration fly ash through the molten salt process. The results indicated that the heavy metal thermal evaporation of fly ash in the molten salt was related to molten salt composition, heat treatment temperature and atmosphere. After treatment with sodium chloride molten salts (contains 10–50 wt% calcium chloride) from 900°C to 1000°C for 2 h, the leaching concentrations of lead, cadmium, copper, zinc and other heavy metals in fly ash were decreased more than 90% and they could fully meet with the landfill standard. Moreover, after molten salt treatment, the weight fraction of fly ash was reduced by 50 wt% than the original one, and the fly ash has been changed as a kind of cementitious material, which has excellent cementitious property. The X-ray diffraction result indicated that the main crystal mineral composition of cementitious materials obtained was alite, belite, alinite and calcium sulphate.

Chemosphere ◽  
1998 ◽  
Vol 36 (11) ◽  
pp. 2523-2533 ◽  
Author(s):  
H.-P. Bipp ◽  
P. Wunsch ◽  
K. Fischer ◽  
D. Bieniek ◽  
A. Kettrup

2022 ◽  
Vol 138 ◽  
pp. 318-327
Author(s):  
Davide Bernasconi ◽  
Caterina Caviglia ◽  
Enrico Destefanis ◽  
Angelo Agostino ◽  
Renato Boero ◽  
...  

2014 ◽  
Vol 32 (5) ◽  
pp. 406-413 ◽  
Author(s):  
Aurore De Boom ◽  
Jean-Emmanuel Aubert ◽  
Marc Degrez

Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.


Sign in / Sign up

Export Citation Format

Share Document