A GIS-based multi-criteria decision support model for planning municipal solid waste collection points: A case study of Çağdaş Neighbourhood, Çiğli District, Izmir, Turkey

2021 ◽  
pp. 0734242X2110637
Author(s):  
Sedat Yalcinkaya ◽  
Sevin Uzer

This study aims to develop a geographic information system (GIS)-based multi-criteria decision support model to create optimal plans for locating municipal solid waste (MSW) collection points. The model performs a series of consecutive GIS-based spatial analyses to determine alternative plans. Then, it weighs the alternatives considering the social, economic and environmental criteria to determine the optimum solution through analytical hierarchy process. The model was implemented as a case study in Çağdaş neighbourhood of Izmir, Turkey. A total of 42 locations were determined as the optimum collection points out of 245 possible collection points, which yields 39% reduction in collection points compared to the existing system. Total number of waste bins and average walking distance to waste collection points were calculated as 129 and 33 m, respectively. The municipal authority would spend 48.79 $ day−1 on fuel for waste collection and transport. In addition, daily air pollutant emissions generated during the operations were estimated as 2.052 g CO, 0.231 g NMVOC, 8.409 g NOx, 0.954 g N2O, 0.260 g NH3, 0.000227 g Pb and 0.0231 g PM 2.5. The results indicated that 14 out of 69 collection points in the existing collection system were not allocated to any waste source geographically. This study presents a unique method for planning MSW collection points on two key aspects: (1) development of a novel method to determine all possible collection point locations using Thiessen polygons and (2) presenting a holistic planning method considering the impacts of the collection system on the waste generators and waste collectors.

2021 ◽  
Vol 13 (4) ◽  
pp. 1785
Author(s):  
Mar Carlos-Alberola ◽  
Antonio Gallardo Izquierdo ◽  
Francisco J. Colomer-Mendoza ◽  
Esther Barreda-Albert

Waste collection is one of the most important public services in a town. However, waste collection has not been effectively implemented in some places due to the lack of economic and management resources. The waste is placed in inappropriate sites with the consequent risks of pollution and unhealthy conditions for the inhabitants. Therefore, establishing a municipal solid waste collection plan can be complicated. The methodologies and techniques that work in countries with medium and high income levels cannot be extrapolated to others with low income level because the boundary conditions are widely different. The aim of this paper is to design a municipal solid waste collection system adapted to this type of situation where not much money can be invested and where data are limited. In these cases, municipalities need to use their existing resources effectively. This paper offers a methodology for these cases as well as a case study. The first step was to gather information about the type and amount of waste generated and the characteristics of the town. The second step was to propose the location of the bins and, finally, the waste collection routes. With all these data, the technical and human resources were set. The methodology used was validated in a real case, the town of Nikki (Benin) in Africa. The collection of three waste fractions was designed with the actual resources of the city in order to offer a realistic implementation. Similar situations can be found around the world, and this case study can be used as an example to improve the waste management practices in some places with low resources.


Author(s):  
Leo Mršić

Chapter explains efficient ways of dealing with business problems of analyzing market environment and market trends under complex circumstances using heterogeneous data source. Under the assumption that used data can be expressed as time series, widely applicable multi variate model is explained together with case study in textile retail. This Chapter includes an overview of research conducted with a brief explanation of approaches and models available today. A widely applicable multi-variate decision support model is presented with advantages, limitations, and several variations for development. The explanation is based on textile retail case study with model wide range of possible applications in perspective. Complex business environment issues are simulated with explanation of several important global trends in textile retail in past seasons. Non-traditional approaches are revised as tools for a better understanding of modern market trends as well as references in relevant literature. A widely applicable multi-variate decision support model and its usage is presented through built stages and simulated. Model concept is based on specific time series transformation method in combination with Bayesian logic and Bayesian network as final business logic layer with front end interface built with open source Bayesian network tool. Explained case study provides one of the most challenging issue in textile retail: market trends seasonal/weather dependence. Separate outcomes for different scenario analysis approaches are presented on real life data from a textile retail chain located in Zagreb, Croatia. Chapter ends with a discussion about similar research’s, wide applicability of presented model with references for future research.


Recycling ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 25
Author(s):  
Alessio Quintili ◽  
Beatrice Castellani

Municipal solid waste collection and transport are functional activities in waste management, with a significant energy and carbon footprint and a significant effect on the urban environment. An issue related to municipal solid waste collection and transport is their regional and municipal implementation, affected by sorting and recycling strategies at local level. An efficient collection is necessary to optimize the whole recycling process. The present paper shows the results of an energy, environmental, and economic evaluation of a case study, analyzing the fleet used for municipal solid waste collection and transport in 10 municipalities in Central Italy. The current scenario was compared with alternative scenarios on the basis of some parameters for performance evaluation: vehicles’ energy consumption, carbon footprint, routes, and costs. Results show that for passenger cars, the alternative scenario based on an entire fleet of dual compressed natural gas (CNG) vehicles led to a reduction of the CO2 emissions (−2675 kgCO2eq) in the analyzed period (January–August 2019) and a reduction of the energy consumption (−1.96 MJ km−1). An entire fleet of CNG vehicles led to an increase of CO2 emissions: +0.02 kgCO2eqkgwaste−1 (+110%) for compactors (35–75 q) and +0.09 kgCO2eqkgwaste−1 (+377%) for compactors (80–180 q). Moreover, both categories report a higher fuel consumption and specific energy consumption. For waste transport high-capacity vehicles, we propose the installation of a Stop-Start System, which leads to environmental and energy benefits (a saving of 38,332 kgCO2eq and 8.8 × 10−7 MJ km−1kgwaste−1). On three-wheeler vehicles, the installation of the Stop-Start System is completely disadvantageous.


Author(s):  
Javier Rodrigo-Ilarri ◽  
María-Elena Rodrigo-Clavero ◽  
Eduardo Cassiraga

This paper introduces BIOLEACH, a new decision support model for the real-time management of municipal solid waste bioreactor landfills that allows estimating the leachate and biogas production. Leachate production is estimated using an adaptation of the water balance equation which considers every hydrological component and the water consumed by anaerobic organic matter degradation to create biogas and the leachate recirculation flows pumped from the landfill pond under a bioreactor management scheme. Landfill gas production is estimated considering the leachate formation process as a coupled effect through the production or consumption of water. BIOLEACH uses waste production and climate data at monthly scale and computes leachate production accounting for the actual conditions inside the waste mass. Biogas production is computed simultaneously, considering the available water to adjust the chemical organic matter biodegradation. BIOLEACH is a valuable bioreactor managing tool as it allows calculating the recirculation volume of leachate that ensures optimal moisture conditions inside the waste mass and therefore maximizing biogas production. As an illustrative example of a BIOLEACH application, the model has been applied to a real landfill located in Murcia Region (Spain) showing the economic and environmental benefits derived from leachate superficial recirculation.


2015 ◽  
Vol 07 (02) ◽  
pp. 85-94 ◽  
Author(s):  
Hamidu Abdulai ◽  
Rafaat Hussein ◽  
Eddie Bevilacqua ◽  
Mark Storrings

Sign in / Sign up

Export Citation Format

Share Document