Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay

2008 ◽  
Vol 24 (7) ◽  
pp. 491-500 ◽  
Author(s):  
Y Verma

Aquatic toxicity of textile dyes and textile and dye industrial effluents were evaluated in an acute toxicity study using Daphnia magna as an aquatic experimental animal model. The 48-h EC50 value for the azo dyes, Remazol Parrot Green was 55.32 mg/L and for Remazol Golden Yellow was 46.84 mg/L. Whereas 48-h EC50 values for three dye industrial effluents (D1, D2, and D3) were 14.12%, 15.52%, and 29.69%, respectively. Similarly, EC50 value for three textile mill effluents (T1, T2, and T3) were >100%, 62.97%, and 63.04%, respectively. These results also showed linear relationship with high degree of confidence ( r2 = >0.84 to >0.99) between immobility and test concentrations. The ratio of 24 to 48-h EC50 remains to be in between 1.1 and 1.2. The general criteria of toxicity classification showed that both dyes were minor acutely toxic having 48-h EC50 in between 10 and 100 mg/L. Of the six textile and dye industrial effluents tested, one was not acutely toxic (48-h EC50 > 100%) and five were minor acutely toxic (48-h EC50 > 14.12–29.69%). The toxicity classification of effluent based on toxic unit (TU) showed that of the six effluents tested five were found toxic (TU = >1) and one was non-toxic (TU = <1). Thus, dye effluents showed highest toxicity and textile effluents lowest toxicity. The study also suggested that the assay with D. magna was an excellent method for evaluation of aquatic toxicity of dyes and dyes containing industrial effluents.

2014 ◽  
Vol 40 (3) ◽  
pp. 115-121 ◽  
Author(s):  
Anna Sierosławska ◽  
Anna Rymuszka ◽  
Tadeusz Skowroński

Abstract The aim of the study was to determine the toxicity of the extract obtained from the cyanobacterial cells derived from the waters of Zemborzycki dam reservoir with use of a battery of biotests. The taxonomic identification of the bloom-forming cyanobacteria revealed high abundance of Aphanizomenon flos-aquae and Dolichospermum spp. (Anabaena spp.) and in a lower degree of Microcystis aeruginosa and Planktothrix agardhii. In the extract obtained from concentrated cyanobacterial cells, hepatotoxin microcystin-LR at a concentration of 22.89 ± 3.74 μg/L and neurotoxin Antx-a at 13.02 ± 0.01 μg/L have been detected. Toxicity of the extract was evaluated with the following assays: Daphtoxkit F magna with the crustacean Daphnia magna, Thamnotoxkit F with the crustacean Thamnocephalus platyurus, Rotoxkit F with the rotifer Brachionus calyciflorus and Protoxkit F with ciliate Tetrahymena thermophila. The most sensitive organism among all studied was T. platyurus for which EC50 was estimated to be 1.2% of the initial extract concentration. On the basis of the highest obtained value of the toxicity unit (TU = 83) the studied sample was classified to the IV class, which is of high acute toxicity. Additionally, it was found that reactivity on cyanobacterial products differs greatly among organisms used in bioassays, which indicate the need for using a set of biotests.


Author(s):  
Anolda ČETKAUSKAITĖ ◽  
Milda Zita VOSYLIENĖ ◽  
Nijolė KAZLAUSKIENĖ ◽  
Virginija KALCIENĖ

This diverse review discusses biotest species and results scoring systems, which were applied to aquatic toxicity assessment of effluents/wastewater (WW) and landfill leachate (LL). European and American aquatic toxicity testing is reviewed. An example of Lithuanian research data on LL biotesting with aquatic organisms of different phylogenetic and ontogenetic levels is presented. Acute toxicity WW and LL is assessed on the basis of (L(E)C50, acute Toxic Units (tua), pt values, and, by applying different simple result scoring systems or toxicity thresholds. The differences in legislation and recommendations for biotest application in WW and LL aquatic toxicity testing are compared. It is concluded that WW and LL lowest acute toxicity data (tua value 0.3) should be considered equally as risk to aquatic environment, and technical management decisions should be made. The universal features of toxicity scoring systems, the problems of inventory of old small landfills and cost effective approach are discussed.


2019 ◽  
Author(s):  
Linjun Zhou ◽  
Deling Fan ◽  
Wei Yin ◽  
Wen Gu ◽  
Zhen Wang ◽  
...  

Abstract Background: The acute toxicity on aquatic organisms are indispensable parameters in the ecological risk assessment priority chemical screening process (e.g. persistent, bioaccumulative and toxic chemicals). Currently, a number of predictive models for aquatic toxicity are available, however, the accuracy of in silico tools in priority assessment and risk assessment still remains to be further studied. Herein, this study evaluated the performance of seven Quantitative Structure–Activity Relationship (QSAR) in silico methods (Danish QSAR Database, Ecological Structure Activity Relationships, KAshinhou Tool for Ecotoxicity on PAS, Toxicity Estimation Software Tool, QSAR Toolbox, Read Across, and Virtual models for property Evaluation of chemicals within a Global Architecture) for assessing acute aquatic toxicity to Daphnia magna and Pimephales promelas using the first batch list of Priority Controlled Chemicals in China. Results: Based on the values for the median lethal dose and the US Environmental Protection Agency’s acute aquatic toxicity categories of concern, the acute toxicity grade was classified into six categories. According to the comparative prediction results, the accuracy of the Daphnia magna toxicity categories prediction was 25%–56%, the correlation coefficient ranged from 0.1236 to 0.6349, and the correlation coefficients of the applicability domain were 0.040 and 0.5148. The corresponding values for the Pimephales promelas toxicity categories prediction were 22%–44%, 0.1495–0.4144, 0.2156 and 0.6793. Conclusion: As the structure of chemicals of first batch list of Priority Controlled Chemicals in China are complex, the accuracy of model prediction is low, which depends on the quality of the constructed model and application domain. Although in silico methods can be used to preliminarily estimate aquatic toxicity, experimental data validation is still required for prioritizing environmental hazards assessments and risk assessments.


Web Ecology ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 35-39 ◽  
Author(s):  
S. Casimiro ◽  
M. L. Fidalgo

Abstract. Textile plants consume large volumes of water and produce a great amount of wastewaters, which can be important sources of toxic discharges in receiving environments. The objective of this study was to evaluate the acute toxicity of textile effluents on the freshwater shrimp A. desmarestii. A whole effluent toxicity test procedure was used to determine the aggregate toxicity of three samples taken before and after wastewater treatment in a textile mill. The following LC50 − 48 h values (%, v/v) were calculated: Untreated effluent −29% effluent (sample 1), 22% effluent (sample 2), and 47% (sample 3); Treated effluent −73% effluent (sample 1), 74% effluent (sample 2), and > 100% (sample 3). Based upon acute toxicity units (TUa = 100/LC50), untreated effluent varied from toxic in samples 1 and 3 (2.00 ≤ TUa ≤ 4.00) to very toxic in sample 2 (TUa > 4.0), whereas treated effluent varied from no toxic in sample 3 to moderately toxic in samples 1 and 2 (1.33 ≤ TUa ≤ 1.99). Despite some limitations and constraints related to innate variability of industrial effluents, our results suggested that A. desmarestii can be a promising and potential test organism for assessing toxicity of complex chemical mixtures.


Author(s):  
E. R. Macagno ◽  
C. Levinthal

The optic ganglion of Daphnia Magna, a small crustacean that reproduces parthenogenetically contains about three hundred neurons: 110 neurons in the Lamina or anterior region and about 190 neurons in the Medulla or posterior region. The ganglion lies in the midplane of the organism and shows a high degree of left-right symmetry in its structures. The Lamina neurons form the first projection of the visual output from 176 retinula cells in the compound eye. In order to answer questions about structural invariance under constant genetic background, we have begun to reconstruct in detail the morphology and synaptic connectivity of various neurons in this ganglion from electron micrographs of serial sections (1). The ganglion is sectioned in a dorso-ventra1 direction so as to minimize the cross-sectional area photographed in each section. This area is about 60 μm x 120 μm, and hence most of the ganglion fit in a single 70 mm micrograph at the lowest magnification (685x) available on our Zeiss EM9-S.


Sign in / Sign up

Export Citation Format

Share Document