Analyzing nanoparticle-induced neurotoxicity: A bibliometric analysis

2020 ◽  
Vol 36 (1) ◽  
pp. 22-29
Author(s):  
Xiaomin Wei ◽  
Fuzhen Yang ◽  
Defang Chen ◽  
Jun Li ◽  
Xiaohong Shi ◽  
...  

Background: In recent years, nanoparticles have been widely used in many fields, ranging from cosmetics, agriculture, environment, and biomedical areas. The increasing use of nanoproducts induces a potential increasing exposure to human body, and then, unknown pathological consequences could increase. Methods: The database was searched from 2008 to 2018 by the Web of Science Core Collection. The bibliometric methods, CiteSpace and HistCite, were used for analysis and visualization of the data. Results: The 2932 publications were analyzed and the annual publications grew from 78 to 512 in a decade. The United States and China mainly contribute to this research area, which accounted for 29.5% and 22.9%, respectively. PLoS One, Scientific Reports, and Nanoscale were the three journals that published the most articles. Keyword analysis indicated that the major research direction was the mechanisms of nanoneurotoxicity, which included oxidative stress, inflammation, astrocyte activation, and the fibrillation of amyloid β protein. Conclusion: This bibliometric study revealed that nanoneurotoxicity was still a research hot topic and could be a promising area of research in the next few years. Nanoparticles play a role in neurodegenerative diseases by inducing reactive oxygen species production, inflammation, alterations of gene expression, and signal pathways.

2021 ◽  
Vol 15 ◽  
Author(s):  
Zenghui Wei ◽  
Jagadish Koya ◽  
Sandra E. Reznik

Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.


2021 ◽  
Vol 22 (4) ◽  
pp. 2099
Author(s):  
Nikol Jankovska ◽  
Tomas Olejar ◽  
Radoslav Matej

Alzheimer’s disease (AD) and sporadic Creutzfeldt–Jakob disease (sCJD) are both characterized by extracellular pathologically conformed aggregates of amyloid proteins—amyloid β-protein (Aβ) and prion protein (PrPSc), respectively. To investigate the potential morphological colocalization of Aβ and PrPSc aggregates, we examined the hippocampal regions (archicortex and neocortex) of 20 subjects with confirmed comorbid AD and sCJD using neurohistopathological analyses, immunohistochemical methods, and confocal fluorescent microscopy. Our data showed that extracellular Aβ and PrPSc aggregates tended to be, in most cases, located separately, and “compound” plaques were relatively rare. We observed PrPSc plaque-like structures in the periphery of the non-compact parts of Aβ plaques, as well as in tau protein-positive dystrophic structures. The AD ABC score according to the NIA-Alzheimer’s association guidelines, and prion protein subtype with codon 129 methionine–valine (M/V) polymorphisms in sCJD, while representing key characteristics of these diseases, did not correlate with the morphology of the Aβ/PrPSc co-aggregates. However, our data showed that PrPSc aggregation could dominate during co-aggregation with non-compact Aβ in the periphery of Aβ plaques.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Woo Shik Shin ◽  
Jing Di ◽  
Qin Cao ◽  
Binsen Li ◽  
Paul M. Seidler ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


The Lancet ◽  
1992 ◽  
Vol 339 (8787) ◽  
pp. 245 ◽  
Author(s):  
Hilkka Soininen ◽  
Stina Syrjänen ◽  
Outi Heinonen ◽  
Heikki Neittaanmäki ◽  
Riitta Miettinen ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Marvin Ruiter ◽  
Christine Lützkendorf ◽  
Jian Liang ◽  
Corette J. Wierenga

The amyloid-β protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-β (Aβ)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult AppNL - F - G-mice, in which Aβ levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aβ-induced hyperexcitability.


1997 ◽  
Vol 56 (12) ◽  
pp. 1356-1362 ◽  
Author(s):  
PETER BOZNER ◽  
VALENTINA GRISHKO ◽  
SUSAN P. LEDOUX ◽  
GLENN L. WILSON ◽  
Y-C CHYAN ◽  
...  

1996 ◽  
Vol 71 ◽  
pp. 73
Author(s):  
Haruo Takemura ◽  
Hiroki Ishikawa ◽  
Hiroki Ozawa ◽  
Toshikazu Saito ◽  
Naohiko Takahata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document