scholarly journals Cyclic AMP Signaling Control of Action Potential Firing Rate and Molecular Circadian Pacemaking in the Suprachiasmatic Nucleus

2011 ◽  
Vol 26 (3) ◽  
pp. 210-220 ◽  
Author(s):  
Susan E. Atkinson ◽  
Elizabeth S. Maywood ◽  
Johanna E. Chesham ◽  
Christian Wozny ◽  
Christopher S. Colwell ◽  
...  
Author(s):  
Amber E Plante ◽  
Joshua P Whitt ◽  
Andrea L. Meredith

Mammalian circadian (24-hour) rhythms are timed by the pattern of spontaneous action potential firing in the suprachiasmatic nucleus (SCN). This oscillation in firing is produced through circadian regulation of several membrane currents, including large-conductance Ca2+- and voltage-activated K+ (BK) and L-type Ca2+ channel (LTCC) currents. During the day, steady-state BK currents depend mostly on LTCCs for activation, while at night, they depend predominantly on RyRs. However, the contribution of these Ca2+ channels to BK channel activation during action potential firing has not been thoroughly investigated. In this study, we used a pharmacological approach to determine that both LTCCs and RyRs contribute to the baseline membrane potential of SCN action potential waveforms, as well as action potential-evoked BK current, during the day and night, respectively. Since the baseline membrane potential is a major determinant of circadian firing rate, we focused on the LTCCs contributing to low voltage activation of BK channels during the subthreshold phase. For these experiments, two LTCC subtypes found in SCN (CaV1.2 and CaV1.3) were co-expressed with BK channels in heterologous cells, where their differential contributions could be separately measured. CaV1.3 channels produced currents that were shifted to more hyperpolarized potentials compared to CaV1.2, resulting in increased subthreshold Ca2+ and BK currents during an action potential command. These results show that while multiple Ca2+ sources in SCN can contribute to the activation of BK current during an action potential, specific BK-CaV1.3 partnerships may optimize the subthreshold BK current activation that is critical for firing rate regulation.


2008 ◽  
Vol 99 (5) ◽  
pp. 2134-2143 ◽  
Author(s):  
Shanshan Li ◽  
Jonathan D. Geiger ◽  
Saobo Lei

Neurotensin (NT) is a tridecapeptide that interacts with three NT receptors; NTS1, NTS2, and NTS3. Although NT has been reported to modulate GABAergic activity in the brain, the underlying cellular and molecular mechanisms of NT are elusive. Here, we examined the effects of NT on GABAergic transmission and the involved cellular and signaling mechanisms of NT in the hippocampus. Application of NT dose-dependently increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from CA1 pyramidal neurons with no effects on the amplitude of sIPSCs. NT did not change either the frequency or the amplitude of miniature (m)IPSCs recorded in the presence of tetrodotoxin. Triple immunofluorescent staining of recorded interneurons demonstrated the expression of NTS1 on GABAergic interneurons. NT increased the action potential firing rate but decreased the afterhyperpolarization (AHP) amplitude in identified CA1 interneurons. Application of L-type calcium channel blockers (nimodipine and nifedipine) abolished NT-induced increases in action potential firing rate and sIPSC frequency and reduction in AHP amplitude, suggesting that the effects of NT are mediated by interaction with L-type Ca2+ channels. NT-induced increase in sIPSC frequency was blocked by application of the specific NTS1 antagonist SR48692, the phospholipase C (PLC) inhibitor U73122, the IP3 receptor antagonist 2-APB, and the protein kinase C inhibitor GF109203X, suggesting that NT increases γ-aminobutyric acid release via a PLC pathway. Our results provide a cellular mechanism by which NT controls GABAergic neuronal activity in hippocampus.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


Author(s):  
Vincenzo Crunelli ◽  
Adam C. Errington ◽  
Stuart W. Hughes ◽  
Tibor I. Tóth

During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca 2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca 2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located.


Sign in / Sign up

Export Citation Format

Share Document