Alpha-1 antitrypsin inhibits formaldehyde-induced apoptosis of human peritoneal mesothelial cells

2020 ◽  
Vol 40 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Jeong-Hoon Lim ◽  
Sang Mi Park ◽  
Ju-Min Yook ◽  
Ji-Sun Ahn ◽  
Soon-Youn Choi ◽  
...  

Background: The alpha-1 antitrypsin (AAT) protein has an important role in the anti-inflammatory and apoptotic response. AAT inhibits not only serine proteases but also cysteine and aspartic proteases. Apoptosis results from the sequential activation of cysteine proteases of the caspase family. This study aimed to evaluate the effect of AAT on formaldehyde-induced apoptosis of human peritoneal mesothelial cells (HPMCs). Methods: HPMCs were cultured and treated with formaldehyde (250 µM) to induce apoptosis. In the AAT group, the cultured HPMCs were pretreated with AAT (2 mg/mL) for 1 h before formaldehyde treatment. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays to determine cell viability, and flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays to detect apoptosis. The MTT assays were used to find optimal concentrations of formaldehyde and AAT. We measured caspase-3 activity and used Western blotting to estimate Bcl-2 and Bad expression. Results: Flow cytometry and TUNEL assays revealed that formaldehyde exposure significantly increased apoptosis compared with the control treatment, but pretreatment with AAT significantly inhibited this effect. Compared with the control, caspase-3 activity was significantly increased and the ratio of Bcl-2 to Bad expression significantly decreased following treatment with formaldehyde. However, caspase-3 activity was significantly lower and the Bcl-2 to Bad expression ratio higher in the AAT group than in the formaldehyde-only group. Conclusion: AAT inhibits formaldehyde-induced apoptosis of HPMCs via a caspase-mediated pathway. These data support a potential use for AAT as a therapeutic agent for the inhibition of peritoneal cell apoptosis during peritoneal dialysis.

2009 ◽  
Vol 29 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Duk-Hyun Lee ◽  
Soon-Youn Choi ◽  
Hye-Myung Ryu ◽  
Chan-Duck Kim ◽  
Sun-Hee Park ◽  
...  

Objective Glucose degradation products (GDPs) are formed during heat sterilization and storage of peritoneal dialysis (PD) fluids. 3,4-dideoxyglucosone-3-ene (3,4-DGE) has been identified as the most bioreactive GDP. 3,4-DGE induces apoptosis in leukocytes and renal tubular epithelial cells. Our aim was to evaluate the apoptotic effects of 3,4-DGE on human peritoneal mesothelial cells (HPMCs). Methods Primary cultured HPMCs were treated with 25 or 50 μmol/L 3,4-DGE. MTT assay was used to determine cell viability. Apoptosis was measured using TUNEL assay and flow cytometry. Expressions of procaspase-3, Bax, and Bcl-2 were estimated by Western blot. Activity of caspase-3 was measured and the effect of the caspase inhibitor zVAD-fmk (Z-Val-Ala-DL-Asp-fluoromethylketone) was evaluated by TUNEL assay. Results 3,4-DGE treatment accelerated cell death in HPMCs in a dose- and time-dependent manner. Treatment with 3,4-DGE (25 and 50 μmol/L) significantly increased apoptosis compared to control ( p < 0.05 and p < 0.01 respectively) by TUNEL assay. Flow cytometry showed treatment with 50 μmol/L 3,4-DGE significantly increased apoptosis compared to control ( p < 0.05). Decreased expression of procaspase-3 and increased activity of caspase-3 were observed in the presence of 50 μmol/L 3,4-DGE compared to control and 25 μmol/L 3,4-DGE ( p < 0.05). 3,4-DGE-induced HPMC apoptosis was decreased after pretreatment with the pan-caspase inhibitor zVAD-fmk in the 50 μmol/L 3,4-DGE-treated group ( p < 0.001). The ratio of Bcl-2 to Bax expression was decreased in the 25 μmol/L and the 50 μmol/L 3,4-DGE-treated groups compared to control ( p < 0.05). Conclusions 3,4-DGE promotes apoptosis in HPMCs by a caspase-related mechanism.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Kuan-Yu Hung ◽  
Shin-Yun Liu ◽  
Te-Cheng Yang ◽  
Tien-Ling Liao ◽  
Shu-Huei Kao

Human peritoneal mesothelial cells (HPMCs) are a critical component of the peritoneal membrane and play a pivotal role in dialysis adequacy. Loss of HPMCs can contribute to complications in peritoneal dialysis. Compelling evidence has shown that high-dialysate glucose is a key factor causing functional changes and cell death in HPMCs. We investigated the mechanism of HPMC apoptosis induced by high-dialysate glucose, particularly the role of mitochondria in the maintenance of HPMCs. HPMCs were incubated at glucose concentrations of 5 mM, 84 mM, 138 mM, and 236 mM. Additionally, N-acetylcysteine (NAC) was used as an antioxidant to clarify the mechanism of high-dialysate-glucose-induced apoptosis. Exposing HPMCs to high-dialysate glucose resulted in substantial apoptosis with cytochrome c release, followed by caspase activation and poly(ADP-ribose) polymerase cleavage. High-dialysate glucose induced excessive reactive oxygen species production and lipid peroxidation as well as oxidative damage to DNA. Mitochondrial fragmentation, multiple mitochondrial DNA deletions, and dissipation of the mitochondrial membrane potential were also observed. The mitochondrial dysfunction and cell death were suppressed using NAC. These results indicated that mitochondrial dysfunction is one of the main causes of high-dialysate-glucose-induced HPMC apoptosis.


2016 ◽  
Vol 26 (5) ◽  
pp. 833-838 ◽  
Author(s):  
Tanya J. Shaw ◽  
Xiang Y. Zhang ◽  
Zhiming Huo ◽  
David Robertson ◽  
Patricia A. Lovell ◽  
...  

AbstractMesothelial cells lining the peritoneal cavity are strategically positioned to respond to and counter intraperitoneal infections, cancer cells, and other challenges. We have investigated human peritoneal mesothelial cells (HPMCs) for phagocytic activity, expression of surface Major Histocompatibility Complex (MHC) class II and accessory molecules involved in antigen presentation, and the ability to present recall antigens to T cells. Phagocytosis of dextran, latex beads, andEscherichia coliwas observed by flow cytometry, and internalization was visualized using confocal and electron microscopy. Flow cytometry and/or cellular enzyme-linked immunosorbent assay showed constitutive expression of ICAM-1, LFA-3, and B7-1, but not B7-2 or MHC class II. Interferon-gamma induced MHC II and ICAM-1 expression in a dose- and time-dependent manner. Importantly, HPMCs induced autologous CD3+T-lymphocyte proliferation (3H incorporation) after pulse with recall antigen. Human peritoneal mesothelial cells equipped with phagocytic and antigen-presenting machinery are anticipated to have an integral role in intraperitoneal immune surveillance.


2008 ◽  
Vol 28 (6) ◽  
pp. 648-654 ◽  
Author(s):  
Marina Vorobiov ◽  
Myriam Malki ◽  
Alla Shnaider ◽  
Ana Basok ◽  
Boris Rogachev ◽  
...  

Background In peritoneal dialysis (PD)-treated patients, denudation of the mesothelium correlates with peritoneal fibrosis and vascular changes. Since recombinant human erythropoietin (rHuEPO) induces a range of cytoprotective cellular responses, rHuEPO treatment may reduce PD fluid (PDF)-induced damage. Methods To investigate the antiapoptotic effect and mechanism of rHuEPO in peritoneal mesothelial cells (PMCs), isolated mice PMCs were used for in vitro characterization of rHuEPO effects. To confirm the in vitro effects, active caspase-3 was analyzed in imprints of liver visceral peritoneum of mice pretreated overnight with rHuEPO (5000 U/kg intraperitoneally) and exposed to PDF (Dianeal 4.25%; Baxter Healthcare, Deerfield, Illinois, USA) for 4 hours. Results Mouse PMCs expressed EPO-receptor mRNA and protein. Short exposure to rHuEPO (5 U/mL) induced phosphorylation of JAK2, STAT5, and ERK1/2. PMCs pretreated for 1 hour with rHuEPO showed reduced PDF-induced caspase-3 activation (49.6%) and DNA fragmentation (38.4%) in comparison to cells treated by PDF alone ( p < 0.05). rHuEPO treatment induced an increase in ERK1/2 phosphorylation and reduced levels of PDF-induced phospho-P38. PD98059, a specific inhibitor of ERK activation, fully blocked the protective effect of rHuEPO. In mice, rHuEPO reduced the apoptotic effect of PDF, as assessed by the level of active caspase-3. Conclusions Our study presents new insights into clinical use of rHuEPO in the setting of PD. We found that rHuEPO provides ERK1/2-dependent protection to PMCs from PDF-induced apoptosis. The use of rHuEPO, or any of its new derivatives that do not stimulate erythropoiesis, should be considered for peritoneal preservation.


2011 ◽  
Vol 34 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Jong-Won Park ◽  
Ju-Min Yook ◽  
Hye-Myung Ryu ◽  
Soon-Youn Choi ◽  
Masayo Morishita ◽  
...  

2005 ◽  
Vol 17 (Supplement) ◽  
pp. 83-83
Author(s):  
Yusuke Nakano ◽  
Keiichi Miyamoto ◽  
Takashi Horiuchi ◽  
Hirokatsu Miwa ◽  
Hitoshi Mitsudumi

Sign in / Sign up

Export Citation Format

Share Document