scholarly journals Human Peritoneal Mesothelial Cells Display Phagocytic and Antigen-Presenting Functions to Contribute to Intraperitoneal Immunity

2016 ◽  
Vol 26 (5) ◽  
pp. 833-838 ◽  
Author(s):  
Tanya J. Shaw ◽  
Xiang Y. Zhang ◽  
Zhiming Huo ◽  
David Robertson ◽  
Patricia A. Lovell ◽  
...  

AbstractMesothelial cells lining the peritoneal cavity are strategically positioned to respond to and counter intraperitoneal infections, cancer cells, and other challenges. We have investigated human peritoneal mesothelial cells (HPMCs) for phagocytic activity, expression of surface Major Histocompatibility Complex (MHC) class II and accessory molecules involved in antigen presentation, and the ability to present recall antigens to T cells. Phagocytosis of dextran, latex beads, andEscherichia coliwas observed by flow cytometry, and internalization was visualized using confocal and electron microscopy. Flow cytometry and/or cellular enzyme-linked immunosorbent assay showed constitutive expression of ICAM-1, LFA-3, and B7-1, but not B7-2 or MHC class II. Interferon-gamma induced MHC II and ICAM-1 expression in a dose- and time-dependent manner. Importantly, HPMCs induced autologous CD3+T-lymphocyte proliferation (3H incorporation) after pulse with recall antigen. Human peritoneal mesothelial cells equipped with phagocytic and antigen-presenting machinery are anticipated to have an integral role in intraperitoneal immune surveillance.

2009 ◽  
Vol 29 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Duk-Hyun Lee ◽  
Soon-Youn Choi ◽  
Hye-Myung Ryu ◽  
Chan-Duck Kim ◽  
Sun-Hee Park ◽  
...  

Objective Glucose degradation products (GDPs) are formed during heat sterilization and storage of peritoneal dialysis (PD) fluids. 3,4-dideoxyglucosone-3-ene (3,4-DGE) has been identified as the most bioreactive GDP. 3,4-DGE induces apoptosis in leukocytes and renal tubular epithelial cells. Our aim was to evaluate the apoptotic effects of 3,4-DGE on human peritoneal mesothelial cells (HPMCs). Methods Primary cultured HPMCs were treated with 25 or 50 μmol/L 3,4-DGE. MTT assay was used to determine cell viability. Apoptosis was measured using TUNEL assay and flow cytometry. Expressions of procaspase-3, Bax, and Bcl-2 were estimated by Western blot. Activity of caspase-3 was measured and the effect of the caspase inhibitor zVAD-fmk (Z-Val-Ala-DL-Asp-fluoromethylketone) was evaluated by TUNEL assay. Results 3,4-DGE treatment accelerated cell death in HPMCs in a dose- and time-dependent manner. Treatment with 3,4-DGE (25 and 50 μmol/L) significantly increased apoptosis compared to control ( p < 0.05 and p < 0.01 respectively) by TUNEL assay. Flow cytometry showed treatment with 50 μmol/L 3,4-DGE significantly increased apoptosis compared to control ( p < 0.05). Decreased expression of procaspase-3 and increased activity of caspase-3 were observed in the presence of 50 μmol/L 3,4-DGE compared to control and 25 μmol/L 3,4-DGE ( p < 0.05). 3,4-DGE-induced HPMC apoptosis was decreased after pretreatment with the pan-caspase inhibitor zVAD-fmk in the 50 μmol/L 3,4-DGE-treated group ( p < 0.001). The ratio of Bcl-2 to Bax expression was decreased in the 25 μmol/L and the 50 μmol/L 3,4-DGE-treated groups compared to control ( p < 0.05). Conclusions 3,4-DGE promotes apoptosis in HPMCs by a caspase-related mechanism.


1997 ◽  
Vol 2 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Marlene L Rose

The immunological properties of endothelial cells suggest they perform a pivotal role in acute and chronic rejection following solid organ transplantation. Their constitutive expression of MHC class II molecules (which initiate allograft rejection by activating CD4 T cells) and accessory molecules allows them to present foreign antigen by both the direct and indirect route to the recipient's immune system. The costimulatory molecules used by endothelial cells appear to differ from those used by traditional antigen-presenting cells such as B cells and dendritic cells. Release of non-HLA antigens from damaged endothelial cells results in a chronic antibody response — possibly contributing to graft vasculopathy and chronic rejection. Further understanding of the factors that regulate MHC class II and accessory molecule expression on endothelial cells could lead to novel strategies of therapeutic intervention.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 196-196
Author(s):  
Nicoletta Sorvillo ◽  
Simon D van Haren ◽  
Wouter Pos ◽  
Eszter Herczenik ◽  
Rob Fijnheer ◽  
...  

Abstract Abstract 196 ADAMTS13 is a plasma metalloproteinase that regulates platelet adhesion and aggregation by virtue of its ability to process newly released ultra-large von Willebrand factor (VWF) multimers on the surface of endothelial cells. Autoantibodies directed against ADAMTS13 prohibit the processing of VWF multimers initiating a rare and life-threatening disorder called acquired thrombotic thrombocytopenic purpura (TTP). HLA-DRB1*11 has recently been identified as a risk factor for acquired TTP. This finding implies that formation of autoantibodies towards ADAMTS13 depends on appropriate presentation of ADAMTS13 derived peptides to CD4+ T-cells by antigen presenting cells. Here, we investigate endocytosis of recombinant ADAMTS13 by immature monocyte-derived dendritic cells (iDCs) using flow cytometry and confocal microscopy. Upon incubation of fluorescently labeled-rADAMTS13 with DCs, a time- and concentration dependent uptake of ADAMTS13 was observed. Endocytosis of ADAMTS13 was completely blocked upon addition of EGTA and mannan. We subsequently explored involvement of C-type lectins (CLRs) in the uptake of ADAMTS13 using specific blocking antibodies and siRNA silencing. We found that ADAMTS13 endocytosis was significantly decreased in cells treated with a monoclonal antibody directed towards macrophage mannose receptor (MR). Furthermore siRNA silencing of MR reduced the uptake of ADAMTS13 by dendritic cells. In vitro binding studies revealed that ADAMTS13 interacts with the carbohydrate recognition domains of MR. These data show that ADAMTS13 is internalized by iDCs in a MR-dependent manner. Antigen presenting cells continuously process endogenous and exogenous antigens into small peptides that are loaded on MHC class I or MHC class II for presentation to T lymphocytes. We have recently developed a method to analyze HLA-DR-presented peptide repertoires of dendritic cells pulsed with antigen (van Haren et al., 2011). Here, we addressed which ADAMTS13-derived peptides were presented on MHC class II alleles of a panel of both HLA-DRB1*11 positive and negative donors. Compared to previous studies with model antigens only a limited number of ADAMTS13-derived peptides were presented on MHC class II. Inspection of peptide-profiles obtained from DRB1*11 positive individuals revealed that two antigenic “core” peptides derived from the CUB1-2 domains of ADAMTS13 were presented by a DR11-positive donor. In addition to these immuno-dominant peptides several other peptides were also presented although with a markedly reduced efficiency. Our findings show that DRB1*11 expressing antigen presenting cells preferentially present antigenic “core” peptides derived from the CUB1-2 domains of ADAMTS13. We hypothesize that functional presentation of these peptides on HLA-DRB1*11 contributes to the onset of acquired TTP by stimulating low affinity self-reactive CD4+ T cells that have escaped negative selection in the thymus. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 58-60 ◽  
Author(s):  
Michael Kruse ◽  
Arezki Mahiout ◽  
Volker Kliem ◽  
Peter Kurz ◽  
Karl-Martin Koch ◽  
...  

To investigate whether the glucose uptake (GU) of human peritoneal mesothelial cells (HPMC) is mediated by glucose transporters and whether this uptake is influenced by interleukin 1–β (IL-1β), we measured 2-deoxy-(3H)-GU of HPMC in vitro, after exposing the cells for different times (two and 12 hours) to increasing concentrations (0.1, 1.0, and 2.0 ng/mL) of IL-1 β. To exclude a noncarrier-mediated transport, GU was also tested in the presence of cytochalasin B. All experiments were performed in triplicate in the cells of two donors. Cytochalasin B inhibits GU of HPMC almost completely. GU of HPMC is not stimulated by insulin. GU is stimulated by IL-1 β in a dose-dependent manner. These data indicate a GU of HPMC, which is mediated by a glucose transporter and stimulated by IL-1 β. The increased uptake of glucose from the dialysate In patients with peritonitis may be mediated by a (cytokineinduced) increased activity of HPMC glucose transporters.


1994 ◽  
Vol 17 (5) ◽  
pp. 252-260 ◽  
Author(s):  
J. Witowski ◽  
J. Knapowski

Glycerol has been proposed as a substitute osmotic agent for glucose in peritoneal dialysis fluids. We have compared the effect of glycerol and glucose on the function of human peritoneal mesothelial cells (HPMC) in vitro. The viability of HPMC was not affected by glycerol (up to 250 mM), whereas it was reduced by glucose in a time- and dose-dependent manner, as assessed by the LDH release. Although the incubation of HPMC with glycerol induced a dose-dependent decrease in HPMC proliferation, the effect was significantly less inhibitory than that produced by glucose. In HPMC treated with 90 mM of glycerol or glucose the incorporation of [3H]-thymidine had reached 79.0±19.3% and 55.3+4.0% of the control (p<0.05 and p<0.01), respectively. As measured by the [methyl-14C]-choline incorporation, the intracellular amount of newly synthesized phospholipids was reduced from (cpm/μg cellular protein) 147±58 in control HPMC to 59+15 in cells exposed to 90 mM of glucose (p<0.01), but not affected by glycerol (163±65). On the other hand, both glycerol and glucose (90 mM) decreased the synthesis of proteins (as assessed by the [3H]-proline incorporation) and interfered with potassium (86Rb) transport mechanisms in HPMC. Our data suggest that there exist some possibly advantageous aspects of glycerol as far as mesothelial cell biocompatibility profile is concerned.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuki Kimura ◽  
Hideyuki Ohzawa ◽  
Hideyo Miyato ◽  
Yuki Kaneko ◽  
Akira Saito ◽  
...  

AbstractPeritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-β1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-β1. TGF-β1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-β1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. MiR-29b inhibits TGF-β1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.


2001 ◽  
Vol 12 (5) ◽  
pp. 1036-1045 ◽  
Author(s):  
KAR NENG LAI ◽  
FU KEUNG LI ◽  
HAO YUI LAN ◽  
SYDNEY TANG ◽  
ANITA W. L. TSANG ◽  
...  

Abstract. Aquaporin (AQP) is a family of water channels that are highly selective for the passage of water and occasionally glycerol. In previous studies, only AQP1 was found in human peritoneal endothelial cells in both control subjects and patients on peritoneal dialysis. As human peritoneal mesothelial cells (HPMC) play an important role in dialysis adequacy and fluid balance in continuous ambulatory peritoneal dialysis patients, this study examined whether AQP1 is present in HPMC. It was found that AQP1 mRNA and protein are present in HPMC constitutively. The localization of AQP1 protein in peritoneal mesothelial cells was confirmed by double immunohistochemical staining of the mesothelial lining of human peritoneal membrane. More important, the expression of AQP1 in HPMC is not constitutive and the transcription and biosynthesis of AQP1 in HPMC is inducible by osmotic agents such as glucose and mannitol. There was significant enhancement of AQP1 biosynthesis upon exposure to glucose in a time- and dose-dependent manner (P< 0.0001). Similar findings were observed in the AQP1 biosynthesis by an endothelial cell line, EA.hy 926. Of particular interest, the upregulation in AQP1 mRNA or biosynthesis in mesothelial cells was always significantly higher than that of endothelial cells when the experiments were conducted under identical settings (P< 0.001). AQP1 expression in HPMC was demonstrated for the first time. Osmotic agents upregulate both mRNA and protein expression of this aquaporin. The role of AQP1 in HPMC in maintaining the ultrafiltration of the peritoneal membrane is potentially of clinical interest.


2001 ◽  
Vol 12 (4) ◽  
pp. 695-702
Author(s):  
ANNA BASOK ◽  
ALLA SHNAIDER ◽  
LIMOR MAN ◽  
CIDIO CHAIMOVITZ ◽  
AMOS DOUVDEVANI

Abstract. Limited data are available concerning the interaction between lymphocytes and human peritoneal mesothelial cells (HPMC) during peritonitis. CD40 is a member of the tumor necrosis factor (TNF) family of receptors whose ligand (CD154) is mainly expressed on the membrane of activated CD4-positive lymphocytes. CD154-CD40 cross-linking is a central event in antigen presentation, B-cell activation by T cells, and regulation of cytokine secretion from various types of cells. The goal of this study was to demonstrate in vitro the presence of CD40 on HPMC and to test its functionality in inducing interleukin-15 (IL-15) and RANTES. We assayed the levels of CD40 by reverse transcription-PCR and flow cytometry and IL-15 and RANTES by enzyme-linked immunosorbent assay. Genetically modified L cells that express elevated levels of CD154 (CD40L cells) were used to stimulate CD40. HPMC express CD40 mRNA and protein. After stimulation with interferon-γ (IFNγ, 5U/ml) or TNFα (1 ng/ml), there was a small increase in CD40 mRNA and protein levels; when both cytokines were applied, the increase in CD40 levels was more than threefold. CD40 ligation induced IL-15 production by HPMC and was additive to IFNγ stimulation. CD40 ligation was strongly synergistic with IFNγ in induction of RANTES (20-fold as compared with unstimulated HPMC), whereas neither ligation nor IFNγ alone could induce RANTES. Pretreatment of HPMC with TNFα and IFNγ increased the response to CD40 ligation in magnitudes that correlated with the elevation of CD40 levels induced by the pretreatment. To conclude, the presence of a functional CD40 on HPMC whose ligation induced IL-15 and RANTES production was detected. It is possible that this receptor acts as a major mediator of T-cell—regulated immune and inflammatory response during peritonitis.


2003 ◽  
Vol 71 (3) ◽  
pp. 1194-1199 ◽  
Author(s):  
Catalina D. Alba Soto ◽  
Gerardo A. Mirkin ◽  
Maria E. Solana ◽  
Stella M. González Cappa

ABSTRACT A striking feature of Chagas' disease is the diversity of clinical presentations. Such variability may be due to the heterogeneity among Trypanosoma cruzi isolates or to the host immune response. Employing two strains which differ in their virulence, we investigated the effect of in vivo infection on professional antigen-presenting cells (APC). Acute infection with the virulent RA strain downregulated the expression of major histocompatibility complex (MHC) class II on splenic dendritic cells (DC) and inhibited its induction on peritoneal macrophages and splenic B cells. It also impaired the ability of DC to prime allogeneic T cells and to form homotypic clusters, suggesting a low maturation state of these cells. In contrast, the low-virulence K98 strain maintained the expression of MHC class II on DC or stimulated it on peritoneal macrophages and B cells and preserved DC's T-cell priming capacity and homotypic clustering. DC from RA-infected mice elicited a lower activation of T. cruzi-specific T-cell proliferation than those from K98-infected mice. APC from RA-infected mice that reached the chronic phase of infection restored MHC class II levels to those found in K98-infected mice and upregulated costimulatory molecules expression, suggesting that the immunosuppression caused by this strain is only transient. Taken together, the results indicate that in vivo infection with T. cruzi modulates APC functionality and that this is accomplished in a strain-dependent manner.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4872-4872
Author(s):  
Quanxing Wang ◽  
Jianchun Wu ◽  
Jianli Wang ◽  
Yushan Liu ◽  
Guoyou Chen ◽  
...  

Abstract Sinomenine (SN), an immunosuppressive compound derived from the Chinese medicinal plant Sinomenium acutum, effectively inhibits both proinflammatory factor production and lymphocyte proliferation. However, the effects of SN on dendritic cells (DC), the professional antigen-presenting cells, have not been elucidated. In this study, we examined the effects of SN on DC generation, maturation and function. We found that SN affected DC in a dose dependent manner; significantly inhibiting surface expression of MHC class II, CD86, and CD40, production of IL-12, TNF-a, IL-1b, and T cell-allostimulatory activity. SN targets antigen-presenting capacity of DC not only via the MHC class II pathway, but also impairs DC migration by inhibiting LPS-induced up-regulation of CCR7 and CXCR4 expression. These inhibitory effects on DC may be partially due to SN-mediated suppression of NF-kB and p38 MAPK pathways. Further study showed that SN-treated DC (DC-SN) induce donor-specific T cell hyporesponsiveness and trigger generation of IL-10-producing T regulatory-like cells in vitro. In vivo transplant studies revealed that, compared to pretreatment with immature DC, pretreatment of recipients with DC-SN could significantly prolong allograft survival, although long-term allograft acceptance was not achieved. Importantly, pretreatment of recipients with DC-SN in combination with SN administration profoundly prolonged allograft survival, resulting in long-term survival of 30% of allografts. Increased generation of CD4+CD25+ Treg cells and enhanced microchimerism in recipients brought on by combination treatment may contribute to this extension of allograft lifespan. Our results demonstrate that SN can promote bone marrow progenitors differentiation to IL-10-producing (Ialow) regulatory DC which contribute to induction of tolerance by increase generation of Treg cells.


Sign in / Sign up

Export Citation Format

Share Document