Process analysis of hydrodynamic deep drawing of cone cups assisted by radial pressure

Author(s):  
Alireza Jalil ◽  
Mohammad Hoseinpour Gollo ◽  
SM Hossein Seyedkashi

Forming of flat sheets into shell conical parts is a complex manufacturing process. Hydrodynamic deep drawing process assisted by radial pressure is a new hydroforming technology in which fluid pressure is applied to the peripheral edge of the sheet in addition to the sheet surface. This technique results in higher drawing ratio and dimensional accuracy, better surface quality, and ability of forming more complex geometries. In this research, a new theoretical model is developed to predict the critical rupture pressure in production of cone cups. In this analysis, Barlat–Lian yield criterion is utilized and tensile instability is considered based on the maximum load applied on the sheet. The proposed model is then validated by a series of experiments. The theoretical predictions are in good agreement with the experimental results. The effects of geometrical parameters and material properties on critical rupture pressure are also studied. The critical pressure is increased with increase in the height ratio, strain hardening exponent, and anisotropy. Higher punch nose radius expands the safe zone. It is shown that the critical pressure decreases for drawing ratios higher than 4.

2018 ◽  
Vol 190 ◽  
pp. 09003
Author(s):  
Maziar Khademi ◽  
Milad Sadegh yazdi ◽  
Mohammad Bakhshi-Jooybari ◽  
Hamid Gorji

Hydrodynamic Deep Drawing (HDDRP), the combination of hydroforming and conventional deep drawing, accommodates the advantages of the two processes. A technique, called HDDRP with inward flowing liquid, has been introduced based on the idea of insertion of radial pressure around the blank rim. The radial pressure created on the blank edge, can increase the drawing ratio. Thus, increasing the radial pressure to an amount greater than the cavity pressure, and independent control of these pressures is the basic idea of this research for forming cylindrical parts. To perform the experiments, two independent pumps were used to provide the two pressures independently. The pressure supply system and the die set were designed in a way that provides simultaneous control of the pressures throughout the process. Then, the effects of radial pressure paths on thickness distribution of cylindrical St13 cups were investigated. In addition, a comparison between HDDRP and HDDRP with inward flowing liquid processes has been performed experimentally. Results indicated that using a higher radial pressure than the cavity pressure and controlling their values at any moment of the process enhances the thickness distribution of the formed part in all regions.


Author(s):  
Milad Sadegh Yazdi ◽  
Mohammad Bakhshi-Jooybari ◽  
Hamid Gorji ◽  
Mohsen Shakeri ◽  
Maziar Khademi

Among the sheet hydroforming processes, hydrodynamic deep drawing (HDD) process has been used to form complex shapes and can produce parts with high drawing ratio. Studies showed that radial pressure created on the edge of the sheet can decrease the drawing force and increase drawing ratio. Thus, increasing of radial pressure to an amount greater than chamber pressure, and independent control of these pressures, is the basic idea in this study. In this research, the effect of radial and chamber pressures on formability of St13 and pure copper sheets in the process of hydrodynamic deep drawing assisted by radial pressure (HDDRP) with inward flowing liquid is investigated. Giving that a significant portion of the maximum thinning of the formed part occurs in the beginning of the process, the pressure supply system used in the experimental tests was designed in a way, which provides simultaneous control of the radial and chamber pressures throughout the process. Thickness distribution, forming force, and tensile stresses are the parameters that were evaluated in this study. Results indicated that using a higher radial pressure than the chamber pressure and controlling their values in the initial stages of the process enhances the thickness distribution of the formed part in all regions. A comparison between the thickness distribution and maximum forming force of the formed parts by the HDDRP and HDDRP with inward flowing liquid methods showed that by applying the later method, parts with more uniform thickness distribution and less maximum thinning and forming force can be achieved.


1990 ◽  
Vol 112 (1) ◽  
pp. 47-56 ◽  
Author(s):  
S. Yossifon ◽  
J. Tirosh

The concept of Maximum Drawing Ratio (MDR), supplementary to the well-known Limit Drawing Ratio (LDR), is defined, examined, and illustrated by experiments. In essence the MDR is reached when the two basic failure modes, namely: rupture (due to tensile instability) and wrinkling (due to buckling instability) are delayed till they occur simultaneously. Thus the process is beneficially utilized for higher drawing ratio by postponing earlier interception of either one of the above failures alone. The ability to suppress (up to a certain extent) the appearance of these failure modes depends heavily on the fluid-pressure path which controls the hydroforming process. The effect of the material properties, like the strain hardening exponent, the normal anisotropy of the blank, etc., as well as the geometrical properties (i.e., the thickness of the blank, the radius of curvature at the lip, etc.) on the MDR, are considered here in some detail. The nature of the solutions by which MDR is reached is discussed.


2004 ◽  
Vol 148 (1) ◽  
pp. 119-131 ◽  
Author(s):  
Lihui Lang ◽  
Joachim Danckert ◽  
Karl Brian Nielsen

2012 ◽  
Vol 457-458 ◽  
pp. 1219-1222 ◽  
Author(s):  
Yu Zhu ◽  
Min Wan ◽  
Ying Ke Zhou ◽  
Qing Hai Liu ◽  
Nan Song Zheng ◽  
...  

Hydrodynamic deep drawing (HDD) is an effective method for manufacturing complicated and thin-walled parts. Aiming at the forming process of the stainless steel part with 0.4 mm thick and complex stepped geometries, the technology scheme of multi-stage HDD assisted by conventional deep drawing (CDD) is proposed in consideration of wrinkling and destabilization in the unsupported region of the conical wall, and finite element models are built. As a key process parameter, pre-forming depth on the quality of the parts is explored with assistance of numerical simulations and verification experiments. Furthermore, the failure modes, including wrinkling and fracture during forming process are discussed; meanwhile, the optimum pre-forming depth is realized. The results indicate that the technological method is proven to be feasible for integral forming of thin-walled parts with a large drawing ratio and stepped geometries; moreover, the parts with uniform thickness distribution and high quality are successfully formed by adopting optimum pre-forming depth.


2003 ◽  
Vol 125 (2) ◽  
pp. 352-362 ◽  
Author(s):  
Prakash Sonis ◽  
N. Venkata Reddy ◽  
G. K. Lal

A process analysis model to determine the limiting drawing ratio for the first draw as well as for redraws is presented considering the effects of normal anisotropy, co-efficient of friction, strain hardening and die arc radius. Predictions of the model presented are in good agreement with the available experimental results. The model can be used by the process planners to determine the minimum number of passes required to achieve the final component geometry. Using the present model, feasible operation sequences which have the minimum number of stages through which the desired cup specification can be achieved is presented for two different cup geometries.


2011 ◽  
Vol 383-390 ◽  
pp. 3046-3050
Author(s):  
Ai Mei Zhang ◽  
Zhi Yuan Zhang ◽  
Qi Li

A novel hydro-mechanical deep drawing for magnesium alloy sheets at gradient temperature is proposed and studied. The novel process is on the basis of the study in sheet metal forming, the properties of magnesium alloy and the forming characteristics of workpiece in deep drawing. It indicates that the deep drawing operation of magnesium alloy sheet should be done in warm condition due to the poor plasticity of magnesium alloy. In addition, the reasonable temperature gradient of the workpiece is necessary in light on the principle of deep drawing. The essence why the limited drawing ratio can be improved with the new process is demonstrated. The reasonable temperature gradient can be obtained by the fluid pressure control during deep drawing operation. Thus the feasibility of the new technology is verified.


2018 ◽  
Vol 97 (5-8) ◽  
pp. 2587-2601 ◽  
Author(s):  
Milad Sadegh-yazdi ◽  
Mohammad Bakhshi-Jooybari ◽  
Mohsen Shakeri ◽  
Hamid Gorji ◽  
Maziar Khademi

Author(s):  
S Yossifon ◽  
J Tirosh

The feasibility of replacing the rigid blankholder in the conventional deep drawing process with a ‘soft’ hydrostatic fluid pressure is examined. The recommended fluid pressure range (the ‘working zone’) which guarantees a sound product in different circumstances is presented. The locus curve for possible failure by wrinkling of the flange and the locus curve for possible ductile rupture along the wall provide the lower and the upper limits respectively of the ‘working zone’. These loci are found by a systematic series of deep drawing tests with different constant fluid pressure blankholders for three kinds of materials (copper, aluminium and stainless steel) at various thicknesses and friction conditions. The influence of the friction coefficient, the drawing ratio and the workpiece wall thickness on the blankholder fluid pressure needed to suppress flange wrinkling becomes evident experimentally.


Sign in / Sign up

Export Citation Format

Share Document