Optimization of the welding sequence and direction for the side beam of a bogie frame based on the discrete particle swarm algorithm

Author(s):  
Qing Shao ◽  
Tao Xu ◽  
Tatsuo Yoshino ◽  
Nan Song ◽  
Zhenglei Yu

For any large weldment with many welding seams, the welding sequence and direction have a strong influence on the assembly and service performance, especially for the side beam of the bogie frame of a high-speed rail passenger car (CHR3; CRRC, Changchun, China). Because different combinations of the welding sequence and direction greatly increase the computational time and research costs, a three-dimensional finite element approach was developed to investigate the optimal welding sequence and direction. Then, a surrogate model was established by design of experiment and used the concepts of a pointer and stack. Finally, the welding sequence and direction were optimized by the discrete particle swarm optimization algorithm. The max residual deformation and stress of the optimal result were −3.92 mm and 212.56 MPa, respectively, which is approximately 22% and 38% lower than the traditional enterprise plan, respectively. Furthermore, a weighted form of the residual deformation and stress was proposed to the end of optimum comprehensive effect, and the result also had 11% and 28% reduction, respectively. The simulation result of the optimal plans well reproduced the theoretical distribution results of the residual deformation and stress. It is proven that the optimal result can improve the welding quality and process of the side beam weldment in production.

2018 ◽  
Vol 10 (12) ◽  
pp. 4445 ◽  
Author(s):  
Lejun Ma ◽  
Huan Wang ◽  
Baohong Lu ◽  
Changjun Qi

In view of the low efficiency of the particle swarm algorithm under multiple constraints of reservoir optimal operation, this paper introduces a particle swarm algorithm based on strongly constrained space. In the process of particle optimization, the algorithm eliminates the infeasible region that violates the water balance in order to reduce the influence of the unfeasible region on the particle evolution. In order to verify the effectiveness of the algorithm, it is applied to the calculation of reservoir optimal operation. Finally, this method is compared with the calculation results of the dynamic programming (DP) and particle swarm optimization (PSO) algorithm. The results show that: (1) the average computational time of strongly constrained particle swarm optimization (SCPSO) can be thought of as the same as the PSO algorithm and lesser than the DP algorithm under similar optimal value; and (2) the SCPSO algorithm has good performance in terms of finding near-optimal solutions, computational efficiency, and stability of optimization results. SCPSO not only improves the efficiency of particle evolution, but also avoids excessive improvement and affects the computational efficiency of the algorithm, which provides a convenient way for particle swarm optimization in reservoir optimal operation.


2011 ◽  
Vol 399-401 ◽  
pp. 1816-1819
Author(s):  
Huan Jun Liu ◽  
Jian Xin Liu ◽  
Hui Chen ◽  
Hua Ji ◽  
Zhi Yi Zhang

In this paper a typical box beam structure on certain high speed power car was taken as study object, Based on the finite element analysis software SYSWELD, established the material parameters database for SMA490BW weathering steel, and performed the numerical simulation for the welding of typical box beam structure of side beam of high speed bogie, comparison between the simulation results and that of experiment test verified the existing welding procedures. For the purpose of studying the influence of welding sequence on the residual stress and providing theoretical support for actual production, the residual stress under different welding sequences was investigated then.


2012 ◽  
Vol 253-255 ◽  
pp. 1235-1240
Author(s):  
Hua Li ◽  
Bao Ming Han ◽  
Fang Lu ◽  
Xiao Juan Li

Train-set circulation problem is an important issue in operations of high-speed passenger trains in the world. On the basis of characteristics of the train-set circulation problem in China, an integer programming model is presented without considering distinct train-set types. With redefinitions of some basic mathematical objects and operations, an improved particle swarm optimization algorithm is proposed to solve the model. The algorithm is applied in a real-life case study based on the timetable of the Wuhan-Guangzhou High-speed Railway Line. The results show that the proposed algorithm is effective to find the optimized train-set circulation plan.


2019 ◽  
Vol 20 (2) ◽  
pp. 105
Author(s):  
Ikhlasul Amallynda

In this paper, two types of discrete particle swarm optimization (DPSO) algorithms are presented to solve the Permutation Flow Shop Scheduling Problem (PFSP). We used criteria to minimize total earliness and total tardiness. The main contribution of this study is a new position update method is developed based on the discrete domain because PFSP is represented as discrete job permutations. In addition, this article also comes with a simple case study to ensure that both proposed algorithm can solve the problem well in the short computational time. The result of Hybrid Discrete Particle Swarm Optimization (HDPSO) has a better performance than the Modified Particle Swarm Optimization (MPSO). The HDPSO produced the optimal solution. However, it has a slightly longer computation time. Besides the population size and maximum iteration have any impact on the quality of solutions produced by HDPSO and MPSO algorithms 


Sign in / Sign up

Export Citation Format

Share Document