A roll-bending approach to suppress the edge cracking of silicon steel in the cold rolling process

Author(s):  
Sang Min Byon ◽  
Yong-Hoon Roh ◽  
Zhaorui Yang ◽  
Youngseog Lee

The range of roll-bending that inhibits the edge cracking of high-silicon (3.0 wt%) steel strip during cold rolling was investigated by performing a pilot cold rolling test. In the rolling test, roll-bending was emulated by lathe-machining the work roll surface to be concave (corresponding to negative roll-bending) or convex (corresponding to positive roll-bending). Crack growth length that propagated during rolling and crack growth direction were measured. Three-dimensional finite element analysis coupled with ductile fracture criterion was conducted to predict the crack growth length and crack growth direction. The reliability of the finite element analysis was verified by comparing the predictions with measurements. A series of finite element simulations were then conducted with different levels of roll-bending, expressed as the ratio of the radius of curvature of work roll surface ( R) to its barrel length ( L).The difference between the measurements and the predictions of the crack growth length and crack growth direction was 6.5% and 8.3%, respectively, when the initial notch length was 6 mm. Even if a high reduction ratio for a given pass was applied to the silicon steel strip, edge cracking did not occur if the L/ R ratio was less than −0.15, with a negative value corresponding to a concave surface profile, representing negative bending.

2014 ◽  
Vol 1061-1062 ◽  
pp. 515-521 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Cold rolled thin strip has received a great deal of attention through technological and theoretical progress in the rolling process, as well as from researchers who have focused on some essential parameters of strip such as its shape and profile. This paper describes the development of a 3-D finite element model of the shape of thin strip during cold rolling to simulate the cold rolling of WCS (work roll crossing and shifting) in asymmetric rolling. This finite element model considers the asymmetrical rolling parameters such as variations in the diameters of the rolls and the crossing angle as the work roll shifts on the strip during cold rolling. The shape and profile of the strip are discussed in the asymmetrical and symmetrical rolling conditions, while the total rolling force and distribution of stress are discussed in the case where the roll cross angle and axial shifting roll changes. The results can then be used to control the shape and profile of thin strip during rolling.


2021 ◽  
Vol 11 (18) ◽  
pp. 8408
Author(s):  
Yong-Hoon Roh ◽  
Sang Min Byon ◽  
Youngseog Lee

In this study, a 3D fracture locus of high-silicon steel strip was constructed through a series of fracture tests with specimens of various shapes and corresponding finite element (FE) simulations of the fracture tests. A series of FE analyses coupled with the developed fracture locus was conducted, and the effect of the secondary roll-bending ratio (defined as L2/R2, where L2 and R2, respectively, denote the secondary work roll barrel length and the radius of the convex curvature of the work roll surface profile emulating positive roll bending) and the initial notch length on edge cracking in the strip during cold rolling was investigated. The results reveal that the 2D fracture locus that does not include the Lode angle parameter (varying between −0.81 and 0.72 during cold rolling) overestimates the edge cracking in the range of 13.1–22.2%. The effect of the initial notch length on the length of crack grown in the transverse direction of the strip during cold rolling is greatest when the ratio L2/R2 is 0.12.


2011 ◽  
Vol 46 (8) ◽  
pp. 794-804 ◽  
Author(s):  
B Koohbor ◽  
S Serajzadeh

A finite element analysis was developed to determine thermomechanical behaviours of strip and work-roll during cold rolling process under practical rolling conditions. The velocity field was first obtained using a rigid-plastic finite element formulation and then it was used to assess the strain and stress distributions within the strip and at the same time, a thermal finite element model based on streamline upwind Petrov–Galerkin scheme was employed to predict temperature distribution within the metal being rolled. In the next stage, the predicted temperature and stress fields at the contact region of strip/work-roll were employed as the boundary conditions to evaluate the thermomechanical behaviour of the work-roll while the effect of back-up rolls was also considered in the mechanical part of the analysis. The model is shown to provide a proper insight for studying the deformation of strip and work-roll during high speed cold rolling process with a relatively low computational cost.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


2008 ◽  
Vol 33-37 ◽  
pp. 23-28
Author(s):  
Masanori Kikuchi ◽  
Shougo Sannoumaru

Dimple fracture tests are conducted under mode I and mixed mode lading conditions. Dimple fracture zone and shear-lip fracture zone are observed by scanning electron microscope precisely. It is found that crack growth direction is affected largely by the change of loading condition. It is also found that the differences of fracture pattern between mid-plane and at free surface are very large. Void diameter and crack growth direction are measured. Numerical simulation is conducted to simulate fracture tests in three-dimensional field. Gurson’s constitutive equation is used and large deformation analyses are conducted. It is assumed that void nucleation is controlled by both plastic strain and stress. Numerical results are compared with those of experiments. It is found that results of numerical simulation agree well with those of experiment qualitatively.


Sign in / Sign up

Export Citation Format

Share Document