Considerations of form defects and surface deformations for tolerance analysis of cylindrical components

Author(s):  
Zhiqiang Zhang ◽  
Jianhua Liu ◽  
Laurent Pierre ◽  
Nabil Anwer

The modeling and simulation of cylindrical surfaces with consideration of form defects have led to considerable research outcomes in the field of Computer-Aided Tolerancing (CAT). However, further consideration of surface deformations caused by external forces still remains a challenge. To address this issue, this paper properly considers the form defects and surface deformations for tolerance analysis of cylindrical components. First, form defects are considered by modeling skin model shapes of cylindrical surfaces. Afterwards, the tight fit and loose fit of a pair of cylindrical surfaces are identified, and the simulation methods of their positioning are presented. Specifically, for tight fit situation, a k-d tree based Iterative Closest Point (ICP) algorithm is used, and for loose fit situation, the constrained registration approach is adopted. Moreover, a Conjugate Gradient-Fast Fourier Transform (CG-FFT) method is presented for the consideration of surface deformations. In addition, simulations of given examples are conducted, which show the considerable effects of form defects and surface deformations. The simulations may also help determine the best performance of the to-be-assembled cylindrical components.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wu-zhou Li ◽  
Zhi-wen Liang ◽  
Yi Cao ◽  
Ting-ting Cao ◽  
Hong Quan ◽  
...  

Abstract Background Tumor motion may compromise the accuracy of liver stereotactic radiotherapy. In order to carry out a precise planning, estimating liver tumor motion during radiotherapy has received a lot of attention. Previous approach may have difficult to deal with image data corrupted by noise. The iterative closest point (ICP) algorithm is widely used for estimating the rigid registration of three-dimensional point sets when these data were dense or corrupted. In the light of this, our study estimated the three-dimensional (3D) rigid motion of liver tumors during stereotactic liver radiotherapy using reconstructed 3D coordinates of fiducials based on the ICP algorithm. Methods Four hundred ninety-five pairs of orthogonal kilovoltage (KV) images from the CyberKnife stereo imaging system for 12 patients were used in this study. For each pair of images, the 3D coordinates of fiducial markers inside the liver were calculated via geometric derivations. The 3D coordinates were used to calculate the real-time translational and rotational motion of liver tumors around three axes via an ICP algorithm. The residual error was also investigated both with and without rotational correction. Results The translational shifts of liver tumors in left-right (LR), anterior-posterior (AP),and superior-inferior (SI) directions were 2.92 ± 1.98 mm, 5.54 ± 3.12 mm, and 16.22 ± 5.86 mm, respectively; the rotational angles in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 3.95° ± 3.08°, 4.93° ± 2.90°, and 4.09° ± 1.99°, respectively. Rotational correction decreased 3D fiducial displacement from 1.19 ± 0.35 mm to 0.65 ± 0.24 mm (P<0.001). Conclusions The maximum translational movement occurred in the SI direction. Rotational correction decreased fiducial displacements and increased tumor tracking accuracy.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1563
Author(s):  
Ruibing Wu ◽  
Ziping Yu ◽  
Donghong Ding ◽  
Qinghua Lu ◽  
Zengxi Pan ◽  
...  

As promising technology with low requirements and high depositing efficiency, Wire Arc Additive Manufacturing (WAAM) can significantly reduce the repair cost and improve the formation quality of molds. To further improve the accuracy of WAAM in repairing molds, the point cloud model that expresses the spatial distribution and surface characteristics of the mold is proposed. Since the mold has a large size, it is necessary to be scanned multiple times, resulting in multiple point cloud models. The point cloud registration, such as the Iterative Closest Point (ICP) algorithm, then plays the role of merging multiple point cloud models to reconstruct a complete data model. However, using the ICP algorithm to merge large point clouds with a low-overlap area is inefficient, time-consuming, and unsatisfactory. Therefore, this paper provides the improved Offset Iterative Closest Point (OICP) algorithm, which is an online fast registration algorithm suitable for intelligent WAAM mold repair technology. The practicality and reliability of the algorithm are illustrated by the comparison results with the standard ICP algorithm and the three-coordinate measuring instrument in the Experimental Setup Section. The results are that the OICP algorithm is feasible for registrations with low overlap rates. For an overlap rate lower than 60% in our experiments, the traditional ICP algorithm failed, while the Root Mean Square (RMS) error reached 0.1 mm, and the rotation error was within 0.5 degrees, indicating the improvement of the proposed OICP algorithm.


Author(s):  
Elisha Sacks ◽  
Leo Joskowicz

Abstract We present an efficient algorithm for worst-case limit kinematic tolerance analysis of planar kinematic pairs with multiple contacts. The algorithm extends computer-aided kinematic tolerance analysis from mechanisms in which parts interact through permanent contacts to mechanisms in which different parts or part features interact at different stages of the work cycle. Given a parametric model of a pair and the range of variation of the parameters, it constructs parametric kinematic models for the contacts, computes the configurations in which each contact occurs, and derives the sensitivity of the kinematic variation to the parameters. The algorithm also derives qualitative variations, such as under-cutting, interference, and jamming. We demonstrate the algorithm on a 26 parameter model of a Geneva mechanism.


Author(s):  
Rikard Söderberg

Abstract This work presents an interface for tolerance analysis in a CAD system. A method for picking up necessary information from a 2D drawing is developed and implemented as an interface in a commercial CAD system. The interface communicates with an external calculation program which determines unknown tolerance limits using the normal distribution model. Results from the calculation program is in the end used by the interface to present measures with tolerances on the drawing. The advantage of using CATI in preliminary design is discussed, and a strategy for treating interrelated tolerance chains is presented.


Author(s):  
R. T. Scott ◽  
G. A. Gabriele

Abstract An exact constraint scheme based on the physical contacting constraints of real part mating features is used to represent the process of assembling the parts. To provide useful probability information about how assembly dimensions are distributed when the parts are assembled as intended, the real world constraints that would prevent interference are ignored. This work addresses some limitations in the area of three dimensional assembly tolerance analysis. As a result of this work, the following were demonstrated: 1. Assembly of parts whose assembly mating features are subjected to variation; 2. Assemble parts using a real world set of exact constraints; 3. Provide probability distributions of assembly dimensions.


Sign in / Sign up

Export Citation Format

Share Document