A gait-assistive mobile robot based on a body weight support and autonomous path tracking system

Author(s):  
S-N Yu ◽  
J-H Jang ◽  
D-H Kim ◽  
J-Y Lee ◽  
C-S Han

With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile robot system combined with a body weight support (BWS) system for gait rehabilitation. The BWS system was designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the autonomous guided vehicle driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a non-holonomic mobile robot was applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation centre. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method, one of the existing geometric path-tracking methods. The effectiveness of the proposed method was verified through real experiments that were conducted for path tracking with static and dynamic obstacle avoidance. Finally, through electromyography signal measurement of the subject, the performance of the proposed system in a real operation condition was evaluated.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhendong Song ◽  
Wei Chen ◽  
Wenbing Wang ◽  
Guoqing Zhang

This paper proposes a body weight support (BWS) system with a series elastic actuator (SEA) to facilitate walking assistance and motor relearning during gait rehabilitation. This system comprises the following: a mobile platform that ensures movement of the system on the ground, a BWS mechanism with an SEA that is capable of providing the desired unloading force, and a pelvic brace to smooth the pelvis motions. The control of the body weight support is realized by an active weight-offload method, and a dynamic model of the BWS system with offload mass of a human is conducted to simulate the control process and optimize the parameters. Preliminary results demonstrate that the BWS system can provide the desired support force and vertical motion of the pelvis.


Sports ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 51
Author(s):  
Daniel Fleckenstein ◽  
Olaf Ueberschär ◽  
Jan C. Wüstenfeld ◽  
Peter Rüdrich ◽  
Bernd Wolfarth

Lower body positive pressure treadmills (LBPPTs) as a strategy to reduce musculoskeletal load are becoming more common as part of sports conditioning, although the requisite physiological parameters are unclear. To elucidate their role, ten well-trained runners (30.2 ± 3.4 years; VO2max: 60.3 ± 4.2 mL kg−1 min−1) ran at 70% of their individual velocity at VO2max (vVO2max) on a LBPPT at 80% body weight support (80% BWSet) and 90% body weight support (90% BWSet), at 0%, 2% and 7% incline. Oxygen consumption (VO2), heart rate (HR) and blood lactate accumulation (LA) were monitored. It was found that an increase in incline led to increased VO2 values of 6.8 ± 0.8 mL kg−1 min−1 (0% vs. 7%, p < 0.001) and 5.4 ± 0.8 mL kg−1 min−1 (2% vs. 7%, p < 0.001). Between 80% BWSet and 90% BWSet, there were VO2 differences of 3.3 ± 0.2 mL kg−1 min−1 (p < 0.001). HR increased with incline by 12 ± 2 bpm (0% vs. 7%, p < 0.05) and 10 ± 2 bpm (2% vs. 7%, p < 0.05). From 80% BWSet to 90% BWSet, HR increases of 6 ± 1 bpm (p < 0.001) were observed. Additionally, LA values showed differences of 0.10 ± 0.02 mmol l−1 between 80% BWSet and 90% BWSet. Those results suggest that on a LBPPT, a 2% incline (at 70% vVO2max) is not yet sufficient to produce significant physiological changes in VO2, HR and LA—as opposed to running on conventional treadmills, where significant changes are measured. However, a 7% incline increases VO2 and HR significantly. Bringing together physiological and biomechanical factors from previous studies into this practical context, it appears that a 7% incline (at 80% BWSet) may be used to keep VO2 and HR load unchanged as compared to unsupported running, while biomechanical stress is substantially reduced.


2014 ◽  
Vol 664 ◽  
pp. 423-428
Author(s):  
Mauricio Plaza Torres ◽  
William Aperador

Hip disarticulation is an amputation through the hip joint capsule, removing the entire lower extremity, with closure of the remaining musculature over the exposed acetabulum. Tumors of the distal and proximal femur were treated by total femur resection; a hip disarticulation sometimes is performance for massive trauma with crush injuries to the lower extremity. This article discusses the design a system for rehabilitation of a patient with bilateral hip disarticulations. The prosthetics designed allowed the patient to do natural gait suspended between parallel articulate crutches with the body weight support between the crutches. The care of this patient was a challenge due to bilateral amputations at such a high level and the special needs of a patient mobility.


2014 ◽  
Vol 8 (6) ◽  
pp. 388-393 ◽  
Author(s):  
Atif Afzal ◽  
Daniel Fung ◽  
Sean Galligan ◽  
Ellen M. Godwin ◽  
John G. Kral ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document