Effect of cracks and pitting defects on gear meshing

Author(s):  
Alfonso Fernandez del Rincon ◽  
Fernando Viadero ◽  
Miguel Iglesias ◽  
Ana de-Juan ◽  
Pablo Garcia ◽  
...  

The development of vibration-based condition monitoring techniques, especially those focused on prognosis, requires the development of better computational models that enable the simulation of the vibratory behaviour of mechanical systems. Gear transmission vibrations are governed by the so-called gear mesh frequency and its harmonics, due to the variable stiffness of the meshing process. The fundamental frequency will be modulated by the appearance of defects which modify the meshing features. This study introduces an advanced model to assess the consequences of defects such as cracks and pitting on the meshing stiffness and other related parameters such as load transmission error or load sharing ratio. Meshing forces are computed by imposing the compatibility and complementarity conditions, leading to a non-linear equation system with inequality constraints. The calculation of deformations is subdivided into a global and a local type. The former is approached by a finite element model and the latter via a non-linear Herztian-based formulation. This procedure enables a reduced computational effort, in contrast to conventional finite element models with contact elements. The formulation used to include these defects is described in detail and their consequences are assessed by a quasi-static analysis of a transmission example.


1992 ◽  
Vol 114 (3) ◽  
pp. 507-514 ◽  
Author(s):  
A. Kahraman ◽  
H. Nevzat Ozguven ◽  
D. R. Houser ◽  
J. J. Zakrajsek

A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.



2010 ◽  
Vol 24-25 ◽  
pp. 25-41 ◽  
Author(s):  
Keith Worden ◽  
W.E. Becker ◽  
Manuela Battipede ◽  
Cecilia Surace

This paper concerns the analysis of how uncertainty propagates through large computational models like finite element models. If a model is expensive to run, a Monte Carlo approach based on sampling over the possible model inputs will not be feasible, because the large number of model runs will be prohibitively expensive. Fortunately, an alternative to Monte Carlo is available in the form of the established Bayesian algorithm discussed here; this algorithm can provide information about uncertainty with many less model runs than Monte Carlo requires. The algorithm also provides information regarding sensitivity to the inputs i.e. the extent to which input uncertainties are responsible for output uncertainty. After describing the basic principles of the Bayesian approach, it is illustrated via two case studies: the first concerns a finite element model of a human heart valve and the second, an airship model incorporating fluid structure interaction.



2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.



Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Gungor D. Beskardes ◽  
Chester J. Weiss ◽  
Evan Um ◽  
Michael Wilt ◽  
Kris MacLennan

Well integrity is one of the major concerns in long-term geologic storage sites due to its potential risk for well leakage and groundwater contamination. Evaluating changes in electrical responses due to energized steel-cased wells has the potential to quantify and predict possible wellbore failures as any kind of breakage or corrosion along highly-conductive well casings will have an impact on the distribution of subsurface electrical potential. However, realistic wellbore-geoelectrical models that can fully capture fine scale details of well completion design and state of well damage at the field scale require extensive computational effort or can even be intractable to simulate. To overcome this computational burden while still keeping the model realistic, we utilize the Hierarchical Finite Element Method which represents electrical conductivity at each dimensional component (1-D edges, 2-D planes and 3-D cells) of a tetrahedra mesh. This allows us to consider well completion designs with real-life geometric scales and well systems with realistic, detailed, progressive corrosion and damage in our models. Here, we present a comparison of possible discretization approaches of a multi-casing completion design in the finite element model. The impacts of the surface casing length and the coupling between concentric well casings, as well as the effects of the degree and the location of well damage on the electrical responses are also examined. Finally, we analyze real surface electric field data to detect the wellbore integrity failure associated with damage.



Author(s):  
J. S. Rao ◽  
J. R. Chang ◽  
T. N. Shiau

Abstract A general finite element model is presented for determining the coupled bending-torsion natural frequencies and mode shapes of geared rotors. Uncoupled bending and torsion frequencies are obtained for examples available in literature and the present program is verified against these. The effect of the gear box is considered to determine the coupled frequencies. Parameters studied include the pressure angle, gear mesh stiffness, and bearing properties. The gear pressure angle is shown to have no effect on the natural frequencies of rotors supported on isotropic bearing supports. Several case studies with bending-torsion coupling are considered and the results obtained are compared with those available in literature. The results of a general rotor system with 8lodes are also presented.





Sign in / Sign up

Export Citation Format

Share Document