Coupled Bending-Torsion Vibration of Geared Rotors

Author(s):  
J. S. Rao ◽  
J. R. Chang ◽  
T. N. Shiau

Abstract A general finite element model is presented for determining the coupled bending-torsion natural frequencies and mode shapes of geared rotors. Uncoupled bending and torsion frequencies are obtained for examples available in literature and the present program is verified against these. The effect of the gear box is considered to determine the coupled frequencies. Parameters studied include the pressure angle, gear mesh stiffness, and bearing properties. The gear pressure angle is shown to have no effect on the natural frequencies of rotors supported on isotropic bearing supports. Several case studies with bending-torsion coupling are considered and the results obtained are compared with those available in literature. The results of a general rotor system with 8lodes are also presented.

Author(s):  
Kai Jokinen ◽  
Erno Keskinen ◽  
Marko Jorkama ◽  
Wolfgang Seemann

In roll balancing the behaviour of the roll can be studied either experimentally with trial weights or, if the roll dimensions are known, analytically by forming a model of the roll to solve response to imbalance. Essential focus in roll balancing is to find the correct amount and placing for the balancing mass or masses. If this selection is done analytically the roll model used in calculations has significant effect to the balancing result. In this paper three different analytic methods are compared. In first method the mode shapes of the roll are defined piece wisely. The roll is divided in to five parts having different cross sections, two shafts, two roll ends and a shell tube of the roll. Two boundary conditions are found for both supports of the roll and four combining equations are written to the interfaces of different roll parts. Totally 20 equations are established to solve the natural frequencies and to form the mode shapes of the non-uniform roll. In second model the flexibility of shafts and the stiffness of the roll ends are added to the support stiffness as serial springs and the roll is modelled as a one flexibly supported beam having constant cross section. Finally the responses to imbalance of previous models are compared to finite element model using beam elements. Benefits and limitations of each three model are then discussed.


Author(s):  
Youngin Choi ◽  
Seungho Lim ◽  
Kyoung-Su Park ◽  
No-Cheol Park ◽  
Young-Pil Park ◽  
...  

The System-integrated Modular Advanced ReacTor (SMART) developed by KAERI includes components like a core, steam generators, coolant pumps, and a pressurizer inside the reactor vessel. Though the integrated structure improves the safety of the reactor, it can be excited by an earthquake and pump pulsations. It is important to identify dynamic characteristics of the reactor internals considering fluid-structure interaction caused by inner coolant for preventing damage from the excitations. Thus, the finite element model is constructed to identify dynamic characteristics and natural frequencies and mode shapes are extracted from this finite element model.


2002 ◽  
Vol 29 (5) ◽  
pp. 641-652 ◽  
Author(s):  
Magdy Samaan ◽  
Khaled Sennah ◽  
John B Kennedy

The type and arrangement of bearings for a bridge superstructure are important considerations in bridge design. For a curved continuous spread-box girder bridge, the support conditions for the bridge superstructure may significantly influence the distribution factors for maximum stresses, reactions, and shear forces as well as the bridge natural frequencies and mode shapes. Current design practices in North America recommend very few guidelines for bearing arrangements and types. This paper describes an extensive study carried out using an experimentally calibrated finite element model, in which curved continuous prototype bridges were analyzed to determine their structural response. Six different types and arrangements of support bearings were studied to determine their effect on the maximum stress and reaction distributions as well as on the natural frequencies of such bridges. The results were used to suggest the most favourable bearing arrangement and type.Key words: bridge bearings, composite, continuous, curved bridges, design, distribution factors, finite element, spread-box.


2014 ◽  
Vol 945-949 ◽  
pp. 853-861 ◽  
Author(s):  
Ying Chung Chen ◽  
Chung Hao Kang ◽  
Siu Tong Choi

The gear mesh stiffnesses have been regarded as constants in most previous models of geared rotor-bearing systems. In this paper, a dynamic analysis of a spur geared rotor-bearing system with nonlinear gear mesh stiffness is presented. The nonlinear gear mesh stiffness is accounted for by bending, fillet-foundation and contact deflections of gear teeth. A finite element model of the geared rotor-bearing system is developed, the equations of motion are obtained by applying Lagrange’s equation, and the dynamic responses are computed by using the fourth-order Runge-Kutta numerical method. Numerical results indicate that the proposed gear mesh stiffness provides a realistic dynamic response for spur geared rotor-bearing system.


1992 ◽  
Vol 114 (3) ◽  
pp. 507-514 ◽  
Author(s):  
A. Kahraman ◽  
H. Nevzat Ozguven ◽  
D. R. Houser ◽  
J. J. Zakrajsek

A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.


1997 ◽  
Vol 119 (2) ◽  
pp. 145-151 ◽  
Author(s):  
M. Krawczuk ◽  
W. Ostachowicz

The paper presents a finite element model of the arch with a transverse, one-edge crack. A part of the cracked arch is modelled by a curved beam finite element with the crack. Parts of the arch without the crack are modelled by noncracked curved beam finite elements. The crack occurring in the arch is nonpropagating and open. It is assumed that the crack changes only the stiffness of the arch, whereas the mass is unchanged. The method of the formation of the stiffness matrix of a curved beam finite element with the crack is presented. The effects of the crack location and its length on the changes of the in-plane natural frequencies and mode shapes of the clamped-clamped arch are studied.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


Author(s):  
M H Arafa ◽  
M M Megahed

This paper presents a finite element (FE) modelling technique to evaluate the mesh compliance of spur gears. Contact between the engaging teeth is simulated through the use of gap elements. Analysis is performed on several gear combinations and the variation in tooth compliance along the contact location is presented in a non-dimensional form. Results are compared with earlier predictions based on analytical, numerical and experimental methods. Load sharing among the mating gear teeth is discussed, and the overall gear mesh stiffness together with its cyclic variation along the path of contact is evaluated.


2013 ◽  
Vol 284-287 ◽  
pp. 461-467
Author(s):  
Ying Chung Chen ◽  
Chung Hao Kang ◽  
Siu Tong Choi

The dynamic analysis of a geared rotor-bearing system with time-varying gear mesh stiffness and pressure angle is presented in this paper. Although there are analyses for both of the gear and rotor-bearing system dynamics, the coupling effect of the time-varying mesh and geared rotor-bearing system is deficient. Therefore, the pressure angle and contact ratio of the geared rotor-bearing system are treated as time-varying variables in the proposed model while they were considered as constant in previous models. The gear mesh stiffness is varied with different contact ratios of the gear pair in the meshing process. The nonlinear equations of motion for the geared rotor-bearing system are obtained by applying Lagrange’s equation and the dynamic responses are computed by using the Runge-Kutta numerical method. Numerical results of this study indicated that the proposed model provides realistic dynamic response of a geared rotor-bearing system.


Author(s):  
Yasser Aktir ◽  
Jean-François Brunel ◽  
Philippe Dufrenoy ◽  
Hervé Mahe

Clutch system is an important element in the vehicle powertrain. It transmits the rotation from the crankshaft to the gearbox input shaft and filters axial and torsional vibrations providing from engine or induced by friction. This paper discusses axial dynamic behavior of automotive clutch for manual transmission. For this study, a tridimensional finite element model of clutch system is developed to simulate a clutch shaker test. First, an impact hammer test is performed to identify vibration properties of each clutch component. A pre-stressed modal analysis is then carried out to determine mode shapes and its associated natural frequencies of the clutch assembly. Shaker and simulation results are eventually compared to validate the clutch model. This latter offers for the design phase, a tool to avoid natural vibrations or to vibrate at specified frequencies.


Sign in / Sign up

Export Citation Format

Share Document