Acoustic emission propagation characteristics in plate structure with various materials, cracks and coating metal

Author(s):  
Kuanfang He ◽  
Zhi Tan ◽  
Yong Cheng ◽  
Xuejun Li

The propagation characteristic of guided waves is important to acoustic emission nondestructive detection for the structural integrity of engineering components. The finite element method is introduced to study the propagation of guided waves in plate structure with different materials, cracks and coating metal. The displacement contours and wave curve at different receiving positions are examined first for the propagation characteristics of guided waves in plate structure with different homogeneous material of steel 45 and GCr15. Next, the interface reflection, refraction and diffraction characteristics of guided waves in plate structure with cracks and steel 45 with coating metal of aluminium 2024 are investigated. Finally, these FE results are compared with the mechanical pencil lead fracture experiment results. The results of this study clearly illustrate the accuracy and reasonableness of the finite element method to predict propagation characteristic of guided wave.

2014 ◽  
Vol 06 (05) ◽  
pp. 1450059 ◽  
Author(s):  
KAIGE ZHU ◽  
DAINING FANG

Dispersion curves for waveguide structures are an important prerequisite for the implementation of guided wave-based nondestructive evaluation (NDE) approach. Although many methods exist, each method is only applicable to a certain type of structures, and also requires complex programming. A Bloch theorem-based finite element method (FEM) is proposed to obtain dispersion curves for arbitrary waveguides using commercial finite element software in this paper Dispersion curves can be obtained for a variety of structures, such as homogeneous plates, multilayered structures, finite cross section rods and honeycomb sandwiches. The propagation of guided waves in honeycomb sandwich plates and beams are discussed in detail. Then, dispersion curves for honeycomb sandwich beams are verified by experiments.


Volume 1 ◽  
2004 ◽  
Author(s):  
Ramez-Robert Naber ◽  
Hamid Bahai ◽  
Barry E. Jones

The ability to model transient wave propagation in solids and determine the Green’s function plays a major role in improving the reliability of quantitative source characterization of acoustic emission. In this work, the finite element method is employed to determine a numerical solution of the Green’s function of an isotropic plate due to a point source applied normally to the surface. The advantage of using the finite element method is that it can be extended to model realistic geometries that cannot be treated analytically. The numerical results presented here are based on a two-dimensional axisymmetric transient finite element analysis. A limited bandwidth approximation of a delta function is used (Hanning function) for modeling the source. Hence the solution is called the band-limited Green’s function. The exact analytical solutions of the Green’s function of an isotropic infinite plate are used to validate the numerical solutions. Further analysis is carried out to investigate the effects of varying the spatial resolution of the finite element model on the accuracy of the solutions. Finally, it is demonstrated how the results of the band-limited Green’s function can be used to accurately convolve the response of an arbitrary source function.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Guodong Yue ◽  
Xiushi Cui ◽  
Ke Zhang ◽  
Zhan Wang ◽  
Dong An

In order to monitor the rail base, the dispersion characteristics and propagation properties of the guided wave are studied. Firstly, two modes named as Modes V1 and V2 are selected by the semianalytical finite element method (SAFE). The region at the bottom edge can be monitored by Mode V1, while the junction of the base edge and the flange can be detected by Mode V2. Then, the characteristics in the propagation process are analyzed using the finite element method (FEM). The two modes can be separated about 0.6 ms after they are excited. Thirdly, a wave attenuation algorithm based on mean is proposed to quantify the wave attenuation. Both waves can have weak attenuation and be detected within 5 m. Finally, a mode-identified experiment is performed to validate the aforementioned analysis. And a defect detection experiment is performed to demonstrate the excellent monitoring characteristics using Mode V2. These results can be used to monitor the rail base in practice engineering.


Ultrasonics ◽  
2006 ◽  
Vol 44 ◽  
pp. e985-e989 ◽  
Author(s):  
J. Gao ◽  
J. Yang ◽  
L.-J. Cui ◽  
J.-C. Cheng ◽  
M.-L. Qian

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7602
Author(s):  
Donato Perfetto ◽  
Alessandro De Luca ◽  
Marco Perfetto ◽  
Giuseppe Lamanna ◽  
Francesco Caputo

Artificial Neural Networks (ANNs) have rapidly emerged as a promising tool to solve damage identification and localization problem, according to a Structural Health Monitoring approach. Finite Element (FE) Analysis can be extremely helpful, especially for reducing the laborious experimental campaign costs for the ANN development and training phases. The aim of the present work is to propose a guided wave-based ANN, developed through the use of the Finite Element Method, to determine the position of damages. The paper first addresses the development and assessment of the modeling technique. The FE model accuracy was proven through the comparison of the predicted results with experimental and analytical data. Then, the ANN was developed and trained on an aluminum plate and subsequently verified in a composite plate, as well as under different damage configurations. According to the results herein proposed, the ANN allowed to detect and localize damages with a high level of accuracy in all cases of study.


Author(s):  
Joseph L. Rose

A strategy is presented here to develop guided wave inspection systems using short-range ultrasonic guided waves. A hybrid analytical finite element method (FEM) is presented. The importance of dispersion curve computation, wave structure analysis in the test part, actuator design, the establishment of appropriate boundary conditions from the actuator design to be used in any FEM computations leading to key experiments, and aspects of system design are discussed. Several interesting problems reported by the author in previous publications are used here to stress the importance of mode and frequency choice when solving guided wave problems.


Sign in / Sign up

Export Citation Format

Share Document