Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: A higher-order finite-boundary element approach

Author(s):  
Nitin Sharma ◽  
Trupti Ranjan Mahapatra ◽  
Subrata Kumar Panda

In this article, the vibration-induced acoustic responses of laminated composite flat panels subjected to harmonic mechanical excitation under uniform temperature load are investigated numerically. The natural frequencies alongside corresponding modes of the flat panels resting on an infinite rigid baffle are obtained by using finite element method in the framework of the higher-order shear deformation theory. A coupled finite and boundary element formulation is then employed to acquire the acoustic responses. The governing equation for the sound radiaiton from the vibrating structures is derived by solving the Helmholtz wave equation. The vibration and acoustic responses are computed by using the present scheme via an in-house computer code developed in MATLAB environment. In order to avoid any excess thermal loading conditions first, the critical buckling temperature of the panel structure is obtained and authenticated with the benchmark values. Further, the sound power levels for isotropic and laminated composite panels are computed using the present scheme and validated with the existing results in the published literature. Finally, the influence of lamination scheme, support conditions and modular ratio on the acoustic radiation behavior of laminated composite flat panels in an elevated thermal environment is studied through various numerical examples. The thermal load is found to have substantial influence on the stiffness of the panels and the peaks in the free vibration responses tend to shift to lower frequencies for higher temperatures. It is also inferred that the panels radiate less efficiently whereas the overall sound pressure level is found to follow an increasing trend with increasing temperature.

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Manish Bhandari ◽  
Kamlesh Purohit

Functionally graded materials (FGMs) are one of the advanced materials capable of withstanding the high temperature environments. The FGMs consist of the continuously varying composition of two different materials. One is an engineering ceramic to resist the thermal loading from the high-temperature environment, and the other is a light metal to maintain the structural rigidity. In the present study, the properties of the FGM plate are assumed to vary along the thickness direction according to the power law distribution, sigmoid distribution, and exponential distribution. The fundamental equations are obtained using the first order shear deformation theory and the finite element formulation is done using minimum potential energy approach. The numerical results are obtained for different distributions of FGM, volume fractions, and boundary conditions. The FGM plate is subjected to thermal environment and transverse UDL under thermal environment and the response is analysed. Numerical results are provided in nondimensional form.


2012 ◽  
Vol 585 ◽  
pp. 44-48 ◽  
Author(s):  
Ajay Kumar ◽  
Pradeep Bhargava ◽  
Anupam Chakrabarti

In the present investigation, free vibration behaviour is studied for the laminated composite skew hypar shells having twist radius of curvature. A higher-order shear deformation theory is employed in the C0 finite element formulation. Higher-order terms in the Taylor’s series expansion are used to represent the higher-order transverse cross sectional deformation modes. The formulation includes Sanders’ approximation for doubly curved shells considering the effect of transverse shear. The structural system is considered to be undamped. The correctness of the formulation is established by comparing the present results of problems with those available in the published literature. The effects of different parameters are studied on the free vibration aspects of laminated composite skew hypar shells. Effect of cross curvature is included in the formulation. The C0 finite element formulation has been done quite efficiently to overcome the problem of C1 continuity associated with the HSDT. The isoparametric FE used in the present model consists of nine nodes with seven nodal unknowns per node. Since there is no result available in the literature based on HSDT on the problem of free vibration of laminated composite skew hypar shells, new results are presented by varying geometry, boundary conditions, ply orientations and skew angles which will serve as benchmark for future researchers.


2018 ◽  
Vol 22 (5) ◽  
pp. 1357-1385 ◽  
Author(s):  
Nitin Sharma ◽  
Trupti Ranjan Mahapatra ◽  
Subrata Kumar Panda ◽  
Pankaj Katariya

The acoustic radiation responses of laminated sandwich baffled flat panels subjected to harmonic loading in an elevated thermal environment are investigated via a novel coupled finite and boundary elements formulation based on the higher-order shear deformation shell theory. The structural stiffness and mass tensors are obtained using competent finite element steps engaging the Hamilton’s principle followed by computation of acoustic responses by resolving the Helmholtz partial differential equation. An in-house MATLAB code is developed based on the present formulation for the computation of all the desired responses. The accuracy and robustness of the present scheme are recognized by the close conformance of the critical buckling temperature, natural frequencies and the sound power level values with the available benchmark solutions alongside the values obtained via a simulation model implemented using commercially available finite element (ANSYS) and boundary element (LMS Virtual.Lab) packages. Subsequently, the present model is employed to solve wide variety of numerical illustrations and the useful inferences related to the influence of elevated temperature, core-to-face thickness ratio, core-to face modular ratio and lay-up scheme on the sound emission characteristics of sandwich composite flat panels are deliberated in detail.


2020 ◽  
Vol 7 (1) ◽  
pp. 80-100
Author(s):  
Rahul Kumar ◽  
Achchhe Lal ◽  
B. M. Sutaria

AbstractIn this paper, non-linear transverse deflection, stress and stress concentration factors (SCF) of isotropic and laminated composite sandwich plate (LCSP) with and without elliptical cutouts subjected to various trans-verse loadings in hygrothermal environment are studied. The basic formulation is based on secant function-based shear deformation theory (SFSDT) with von-Karman nonlinearity. The governing equation of non-linear deflection is derived using C0 finite element method (FEM) through minimum potential energy approach. Normalized trans-verse maximum deflections (NTMD) along with stress concentration factor is determined by using Newton’s Raphson method through Gauss point stress extrapolation. Influence of fiber orientations, load parameters, fiber volume fractions, plate span to thickness ratios, aspect ratios, thickness of core and face, position of core, boundary conditions, environmental conditions and types of transverse loading in MATLAB R2015a environment are examined. The numerical results using present solution methodology are verified with the results available in the literatures.


2020 ◽  
pp. 002199832098005
Author(s):  
Sy-Ngoc Nguyen ◽  
Tam T Truong ◽  
Maenghyo Cho ◽  
Nguyen-Thoi Trung

In the present study, the viscoelastic analysis is investigated for composite laminated plates using a smoothed finite element method called cell/element based smoothed discrete shear gap method. Moreover, the hygrothermal effects is considered on the viscoelastic responses of composite laminated plates. The first-order shear deformation theory is employed due to its simplicity and accuracy. With the help of the convolution theorem in Laplace transformation, the complex stress-strain relationship in integral form is simplified to linear in transformed domain. Therefore, all computing procedures are performed in the transformed domain and then, using inverse techniques (Fast Fourier Transform) to converted back to the real-time domain. The study provides an effective computational tool to analyze the viscoelastic response of laminated composite taking into account the influence of the time and hygrothermal effects.


1984 ◽  
Vol 51 (4) ◽  
pp. 745-752 ◽  
Author(s):  
J. N. Reddy

A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano [6], but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.


2013 ◽  
Vol 405-408 ◽  
pp. 3139-3142
Author(s):  
Kwang Sung Woo ◽  
Won Seok Jang ◽  
Yoo Mi Kwon ◽  
Jun Hyung Jo

The concept of thep-convergent boundary element modeling has been presented to analyze the potential problem with L-shaped domain. The details of thep-convergent boundary element formulation are discussed. These include the equations of nodal collocation for thep-convergent scheme, selection of higher order hierarchical shape functions, techniques for integrating the product of the kernel functions and corresponding shape functions, strategies for selecting collocation points used in approximating the unknowns associated with the higher order shape functions, and program organizations. A numerical example that demonstrates the performance of thep-convergent boundary element formulation is shown with respect to different arrangement of collocation points including both symmetric non-hierarchical pattern and non-symmetric hierarchical pattern.


Sign in / Sign up

Export Citation Format

Share Document