A novel path planning method of mobile robots based on an improved bat algorithm

Author(s):  
Zhongbin Wang ◽  
Ziqing Wu ◽  
Lei Si ◽  
Kuangwei Tong ◽  
Chao Tan

In order to solve the global path planning problem of mobile robots, an improved bat algorithm based on inertial weight and Levy flight is proposed in this paper. The linear inertial weights are used to prevent the algorithm from converging prematurely and the Levy flight is introduced in the global search stage to change the flight direction of the bat individuals. Furthermore, in the local search stage, the random exploration mechanism in Cauchy Distribution is utilized to enhance the local mining ability of the algorithm and search for the local optimal values. Then, some simulations are provided to verify the superiority of the improved bat algorithm to other optimization algorithms. Finally, the improved bat algorithm is applied in the global path planning, and the environment model and fitness function construction are reasonably established. The results indicate the feasibility and effectiveness of proposed algorithm in solving path planning problems.

10.5772/58543 ◽  
2014 ◽  
Vol 11 (7) ◽  
pp. 94 ◽  
Author(s):  
Imen Châari ◽  
Anis Koubâa ◽  
Sahar Trigui ◽  
Hachemi Bennaceur ◽  
Adel Ammar ◽  
...  

2019 ◽  
Vol 16 (9) ◽  
pp. 3717-3727
Author(s):  
Monica Sood ◽  
Sahil Verma ◽  
Vinod Kumar Panchal ◽  
Kavita

The planning of optimal path is an important research domain due to vast applications of optimal path planning in the robotics, simulation and modeling, computer graphics, virtual reality estimation and animation, and bioinformatics. The optimal path planning application demands to determine the collision free shortest and optimal path. There can be numerous possibilities that to find the path with optimal length based on different types of available obstacles during the path and different types of workspace environment. This research work aims to identify the optimum path from the initial source-point to final point for the unknown workspace environment consists of static obstacles. For this experimentation, swarm intelligence based hybrid concepts are considered as the work collaboration and intelligence behavior of swarm agents provides the resourceful solution of NP hard problems. Here, the hybridization of concepts makes the solution of problem more efficient. Among swarm intelligence concepts, cuckoo search (CS) algorithm is one of the efficient algorithms due to clever behavior and brood parasitic property of cuckoo birds. In this research work, two hybrid concepts are proposed. First algorithm is the hybridized concept of cuckoo search with bat algorithm (BA) termed as CS-BAPP. Another algorithm is the hybridized concept of cuckoo search with firefly algorithm (FA) termed as CS-FAPP. Both algorithms are initially tested on the benchmarks functions and applied to the path planning problem. For path planning, a real time dataset area of Alwar region situated at Rajasthan (India) is considered. The selected region consists of urban and dense vegetation land cover features. The results for the optimal path planning on Alwar region are assessed using the evaluation metrics of minimum number of iterations, error rate, success rate, and simulation time. Moreover, the results are also compared with the individual FA, BA, and CS along with the comparison of hybrid concepts.


2016 ◽  
Vol 3 (11) ◽  
pp. 160566 ◽  
Author(s):  
Paulo F. C. Tilles ◽  
Sergei V. Petrovskii ◽  
Paulo L. Natti

Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or ‘bouts’ (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings.


2021 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Eduardo Guzmán Ortiz ◽  
Beatriz Andres ◽  
Francisco Fraile ◽  
Raul Poler ◽  
Ángel Ortiz Bas

Purpose: The purpose of this paper is to describe the implementation of a Fleet Management System (FMS) that plans and controls the execution of logistics tasks by a set of mobile robots in a real-world hospital environment. The FMS is developed upon an architecture that hosts a routing engine, a task scheduler, an Endorse Broker, a controller and a backend Application Programming Interface (API). The routing engine handles the geo-referenced data and the calculation of routes; the task scheduler implements algorithms to solve the task allocation problem and the trolley loading problem using Integer Linear Programming (ILP) model and a Genetic Algorithm (GA) depending on the problem size. The Endorse Broker provides a messaging system to exchange information with the robotic fleet, while the controller implements the control rules to ensure the execution of the work plan. Finally, the Backend API exposes some FMS to external systems.Design/methodology/approach: The first part of the paper, focuses on the dynamic path planning problem of a set of mobile robots in indoor spaces such as hospitals, laboratories and shopping centres. A review of algorithms developed in the literature, to address dynamic path planning, is carried out; and an analysis of the applications of such algorithms in mobile robots that operate in real in-door spaces is performed. The second part of the paper focuses on the description of the FMS, which consists of five integrated tools to support the multi-robot dynamic path planning and the fleet management.Findings: The literature review, carried out in the context of path planning problem of multiple mobile robots in in-door spaces, has posed great challenges due to the environment characteristics in which robots move. The developed FMS for mobile robots in healthcare environments has resulted on a tool that enables to: (i) interpret of geo-referenced data; (ii) calculate and recalculate dynamic path plans and task execution plans, through the implementation of advanced algorithms that take into account dynamic events; (iii) track the tasks execution; (iv) fleet traffic control; and (v)  to communicate with one another external systems.Practical implications: The proposed FMS has been developed under the scope of ENDORSE project that seeks to develop safe, efficient, and integrated indoor robotic fleets for logistic applications in healthcare and commercial spaces. Moreover, a computational analysis is performed using a virtual hospital floor-plant.Originality/value: This work proposes a novel FMS, which consists of integrated tools to support the mobile multi-robot dynamic path planning in a real-world hospital environment. These tools include: a routing engine that handles the geo-referenced data and the calculation of routes. A task scheduler that includes a mathematical model to solve the path planning problem, when a low number of robots is considered. In order to solve large size problems, a genetic algorithm is also implemented to compute the dynamic path planning with less computational effort. An Endorse broker to exchanges information between the robotic fleet and the FMS in a secure way. A backend API that provides interface to manage the master data of the FMS, to calculate an optimal assignment of a set of tasks to a group of robots to be executed on a specific date and time, and to add a new task to be executed in the current shift. Finally, a controller to ensures that the robots execute the tasks that have been assigned by the task scheduler.


Author(s):  
Siyab Khan ◽  
Abdullah Khan ◽  
Rehan Ullah ◽  
Maria Ali ◽  
Rahat Ullah

Various nature-inspired algorithms are used for optimization problems. Recently, one of the nature-inspired algorithms became famous because of its optimality. In order to solve the problem of low accuracy, famous computational methods like machine learning used levy flight Bat algorithm for the problematic classification of an insulin DNA sequence of a healthy human, one variant of the insulin DNA sequence is used. The DNA sequence is collected from NCBI. Preprocessing alignment is performed in order to obtain the finest optimal DNA sequence with a greater number of matches between base pairs of DNA sequences. Further, binaries of the DNA sequence are made for the aim of machine readability. Six hybrid algorithms are used for the classification to check the performance of these proposed hybrid models. The performance of the proposed models is compared with the other algorithms like BatANN, BatBP, BatGDANN, and BatGDBP in term of MSE and accuracy. From the simulations results it is shown that the proposed LFBatANN and LFBatBP algorithms perform better compared to other hybrid models.


Sign in / Sign up

Export Citation Format

Share Document