Accuracy calibration of a 3-CRU translational parallel robot based on the subset of error measurements

Author(s):  
Tie Zhang ◽  
Guangcai Ma ◽  
Yachao Cao ◽  
Yingwu He

Robot accuracy calibration is an effective method to improve its kinematic accuracy. However, most of the existing calibration methods need to measure the complete set of 6-dimensional pose errors of the end-effector, which makes the calibration process especially complicated. In this paper, an accuracy calibration method for a 3-CRU translational parallel robot is proposed based on the subset of error measurements. The process is implemented by four steps: 1) the error model is established based on matrix method. Then the structural errors to be identified are separated. 2) part of pose errors of the end-effector are measured by laser tracker and used to form the subset of error measurements. 3) the minimum structural error linear combination affecting robot accuracy is determined according to the minimum parameter error linear combination theorem. After that, the structural errors can be identified based on the subset of error measurements. 4) error compensation based on the identification results. This method can not only ensure the identifiability of the structural errors, but also can realize error identification based on the subset of error measurements, which will significantly reduce the calibration workload and improve the calibration efficiency. Experiments are carried out to prove the effectiveness of the calibration method.

2011 ◽  
Vol 464 ◽  
pp. 340-343
Author(s):  
Wei Da Li ◽  
Juan Li ◽  
Li Ning Sun

Kinematic calibration is an effective method of improving robotic absolute position accuracy by means of measurement, identification and compensation etc. This paper investigates the technology of kinematic calibration and error compensation for the 2-DOF planar parallel robot. A multi-step calibration method is presented based on error itterative method and nonlinear optimum method. Experimental results indicate that the proposed method can effectively compensate position error of the robot in Oxy plane, and the absolute position error of the calibrated robot is less than 6μm.


1999 ◽  
Author(s):  
Chunhe Gong ◽  
Jingxia Yuan ◽  
Jun Ni

Abstract Robot calibration plays an increasingly important role in manufacturing. For robot calibration on the manufacturing floor, it is desirable that the calibration technique be easy and convenient to implement. This paper presents a new self-calibration method to calibrate and compensate for robot system kinematic errors. Compared with the traditional calibration methods, this calibration method has several unique features. First, it is not necessary to apply an external measurement system to measure the robot end-effector position for the purpose of kinematic identification since the robot measurement system has a sensor as its integral part. Second, this self-calibration is based on distance measurement rather than absolute position measurement for kinematic identification; therefore the calibration of the transformation from the world coordinate system to the robot base coordinate system, known as base calibration, is not necessary. These features not only greatly facilitate the robot system calibration but also shorten the error propagation chain, therefore, increase the accuracy of parameter estimation. An integrated calibration system is designed to validate the effectiveness of this calibration method. Experimental results show that after calibration there is a significant improvement of robot accuracy over a typical robot workspace.


Robotica ◽  
2013 ◽  
Vol 32 (3) ◽  
pp. 447-466 ◽  
Author(s):  
Albert Nubiola ◽  
Mohamed Slamani ◽  
Ahmed Joubair ◽  
Ilian A. Bonev

SUMMARYThe absolute accuracy of a small industrial robot is improved using a 30-parameter calibration model. The error model takes into account a full kinematic calibration and five compliance parameters related to the stiffness in joints 2, 3, 4, 5, and 6. The linearization of the Jacobian is performed to iteratively find the modeled error parameters. Two coordinate measurement systems are used independently: a laser tracker and an optical CMM. An optimized end-effector is developed specifically for each measurement system. The robot is calibrated using fewer than 50 configurations and the calibration efficiency validated in 1000 configurations using either the laser tracker or the optical CMM. A telescopic ballbar is also used for validation. The results show that the optical CMM yields slightly better results, even when used with the simple triangular plate end-effector that was developed mainly for the laser tracker.


2014 ◽  
Vol 658 ◽  
pp. 606-611 ◽  
Author(s):  
Dan Romulus Dogaru ◽  
Ioan Doroftei

Offline programming requires a good accuracy of the manipulators. The solution to the problem is to use a feedback mechanism to minimize the error. But, the real coordinate of the robot can be achieved with a measurement system. With this system the robot is calibrated and therefore errors are minimized. In this paper, an overview on some calibration methods used to reduce positioning and orientation errors of the end-effector are discussed. A set of methods are using a laser tracker for the measurements and the other methods are based on computer vision.


1999 ◽  
Vol 122 (1) ◽  
pp. 174-181 ◽  
Author(s):  
Chunhe Gong ◽  
Jingxia Yuan ◽  
Jun Ni

Robot calibration plays an increasingly important role in manufacturing. For robot calibration on the manufacturing floor, it is desirable that the calibration technique be easy and convenient to implement. This paper presents a new self-calibration method to calibrate and compensate for robot system kinematic errors. Compared with the traditional calibration methods, this calibration method has several unique features. First, it is not necessary to apply an external measurement system to measure the robot end-effector position for the purpose of kinematic identification since the robot measurement system has a sensor as its integral part. Second, this self-calibration is based on distance measurement rather than absolute position measurement for kinematic identification; therefore the calibration of the transformation from the world coordinate system to the robot base coordinate system, known as base calibration, is not necessary. These features not only greatly facilitate the robot system calibration, but also shorten the error propagation chain, therefore, increase the accuracy of parameter estimation. An integrated calibration system is designed to validate the effectiveness of this calibration method. Experimental results show that after calibration there is a significant improvement of robot accuracy over a typical robot workspace. [S1087-1357(00)01301-0]


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5919
Author(s):  
Caglar Icli ◽  
Oleksandr Stepanenko ◽  
Ilian Bonev

This paper presents an automated calibration method for industrial robots, based on the use of (1) a novel, low-cost, wireless, 3D measuring device mounted on the robot end-effector and (2) a portable 3D ball artifact fixed with respect to the robot base. The new device, called TriCal, is essentially a fixture holding three digital indicators (plunger style), the axes of which are orthogonal and intersect at one point, considered to be the robot tool center point (TCP). The artifact contains four 1-inch datum balls, each mounted on a stem, with precisely known relative positions measured on a Coordinate Measuring Machine (CMM). The measurement procedure with the TriCal is fully automated and consists of the robot moving its end-effector in such as a way as to perfectly align its TCP with the center of each of the four datum balls, with multiple end-effector orientations. The calibration method and hardware were tested on a six-axis industrial robot (KUKA KR6 R700 sixx). The calibration model included all kinematic and joint stiffness parameters, which were identified using the least-squares method. The efficiency of the new calibration system was validated by measuring the accuracy of the robot after calibration in 500 nearly random end-effector poses using a laser tracker. The same validation was performed after the robot was calibrated using measurements from the laser tracker only. Results show that both measurement methods lead to similar accuracy improvements, with the TriCal yielding maximum position errors of 0.624 mm and mean position errors of 0.326 mm.


Author(s):  
Shuheng Liao ◽  
Kornel Ehmann ◽  
Jian Cao

Abstract Incremental sheet forming is a state-of-the-art manufacturing process for the rapid manufacture of sheet metal components without the use of geometry-specific dies. In this paper, a novel ISF machine, based on a unique overconstrained parallel robot called the Tri-pyramid robot, is introduced. The inverse and forward kinematics of the machine are first analyzed and calibrated based on experimental measurements. In turn, to compensate the kinematic and compliance errors of the machine, a linear encoder system, developed to directly measure the end-effector positions, in conjunction with a neural network, trained to map encoder readings and spatial end-effector positions, is used. A feedback control law is then implemented to compensate the errors in real-time. Experimental results demonstrate that after calibration and error compensation the accuracy of the machine is improved tenfold, making it adequate for incremental forming applications.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2898 ◽  
Author(s):  
Sen Qian ◽  
Kunlong Bao ◽  
Bin Zi ◽  
Ning Wang

Three-dimensional (3D) printing technology has been greatly developed in the last decade and gradually applied in the construction, medical, and manufacturing industries. However, limited workspace and accuracy restrict the development of 3D printing technology. Due to the extension range and flexibility of cables, cable-driven parallel robots can be applied in challenging tasks that require motion with large reachable workspace and better flexibility. In this paper, a cable-driven parallel robot for 3D Printing is developed to obtain larger workspace rather than traditional 3D printing devices. A kinematic calibration method is proposed based on cable length residuals. On the basis of the kinematic model of the cable-driven parallel robot for 3D Printing, the mapping model is established among geometric structure errors, zero errors of the cable length, and end-effector position errors. In order to improve the efficiency of calibration measurement, an optimal scheme for measurement positions is proposed. The accuracy and efficiency of the kinematics calibration method are verified through numerical simulation. The calibration experiment based on the motion capture system indicates that the position error of end-effector is decreased to 0.6157 mm after calibration. In addition, the proposed calibration method is effective and verified for measurement positions outside optimal positions set through experiments.


2008 ◽  
Vol 381-382 ◽  
pp. 579-582
Author(s):  
Jian Fei Ouyang ◽  
W. Liu ◽  
Xing Hua Qu ◽  
Y. Yan

A technique to compensate the geometry errors of industrial robot using Laser Tracker System (LTS) has been presented in this paper. A Spherically Mounted Retro-reflector (SMR) is mounted on the end-effector of industrial robot. The positions of SMR are measured by LTS and compared with the nominal value of industrial robot to get geometry error database of robot. The updated error database, together with real-time measuring of the positions on the robot’s end-effector can be used to compensate the geometric errors of the robot. Using this technique to compensate the industrial robot, the geometry errors can be decreased from 0.1mm to 0.04mm.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 765
Author(s):  
Hugo Álvarez ◽  
Marcos Alonso ◽  
Jairo R. Sánchez ◽  
Alberto Izaguirre

This paper describes a method for calibrating multi camera and multi laser 3D triangulation systems, particularly for those using Scheimpflug adapters. Under this configuration, the focus plane of the camera is located at the laser plane, making it difficult to use traditional calibration methods, such as chessboard pattern-based strategies. Our method uses a conical calibration object whose intersections with the laser planes generate stepped line patterns that can be used to calculate the camera-laser homographies. The calibration object has been designed to calibrate scanners for revolving surfaces, but it can be easily extended to linear setups. The experiments carried out show that the proposed system has a precision of 0.1 mm.


Sign in / Sign up

Export Citation Format

Share Document