robot accuracy
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Vicent Girbés-Juan ◽  
Vinicius Schettino ◽  
Luis Gracia ◽  
J. Ernesto Solanes ◽  
Yiannis Demiris ◽  
...  

AbstractHigh dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method.


2021 ◽  
Vol 133 (1029) ◽  
pp. 115001
Author(s):  
Ming Zhou ◽  
Guanru Lv ◽  
Jian Li ◽  
Zengxiang Zhou ◽  
Zhigang Liu ◽  
...  

Abstract The double revolving fiber positioning unit (FPU) is one of the key technologies of The Large Sky Area Multi-Object Fiber Spectroscope Telescope (LAMOST). The positioning accuracy of the computer controlled FPU depends on robot accuracy as well as the initial parameters of FPU. These initial parameters may deteriorate with time when FPU is running in non-supervision mode, which would lead to bad fiber position accuracy and further efficiency degradation in the subsequent surveys. In this paper, we present an algorithm based on deep learning to detect the FPU’s initial angle using the front illuminated image of LAMOST focal plane. Preliminary test results show that the detection accuracy of the FPU initial angle is better than 2.°5, which is good enough to distinguish those obvious bad FPUs. Our results are further well verified by direct measurement of fiber position from the back illuminated image and the correlation analysis of the spectral flux in LAMOST survey data.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110477
Author(s):  
Hoai-Nhan Nguyen ◽  
Phu-Nguyen Le ◽  
Hee-Jun Kang

Robot kinematic calibration used to be carried out with the partial pose measurements (position only) of dimension 3 in industry, while full pose measurements (orientation and position) of dimension 6 sometimes could be considered to improve the calibration performance. This paper investigates the effects of measurement dimensions on robot calibration accuracy. It compares the resulting robot accuracies in both partial pose and full pose cases after calibrating three structural types of robot manipulators such as a serial manipulator (Hyundai HA-06 robot), a single closed-chain manipulator (Hyundai HX-165 robot), and a multiple closed-chain manipulator (Hyundai HP-160 robot). These comparative studies show when the full-pose based calibration need to be considered and how much it contributes the improvement of robot accuracy to the different structural type of robot manipulators.


2021 ◽  
Author(s):  
Juan Sebastian Toquica ◽  
José Maurı́cio Motta

Abstract This paper proposes a methodology for calibration of industrial robots that uses a concept of measurement sub-regions, allowing low-cost solutions and easy implementation to meet the robot accuracy requirements in industrial applications. The solutions to increasing the accuracy of robots today have high-cost implementation, making calibration throughout the workplace in industry a difficult and unlikely task. Thus, reducing the time spent and the measured workspace volume of the robot end-effector are the main benefits of the implementation of the sub-region concept, ensuring sufficient flexibility in the measurement step of robot calibration procedures. The main contribution of this article is the proposal and discussion of a methodology to calibrate robots using several small measurement sub-regions and gathering the measurement data in a way equivalent to the measurements made in large volume regions, making feasible the use of high-precision measurement systems but limited to small volumes, such as vision-based measurement systems. The robot calibration procedures were simulated according to the literature, such that results from simulation are free from errors due to experimental setups as to isolate the benefits of the measurement proposal methodology. In addition, a method to validate the analytical off-line kinematic model of industrial robots is proposed using the nominal model of the robot supplier incorporated into its controller.


Author(s):  
Guixiu Qiao ◽  
Guangkun Li

Abstract Industrial robots play important roles in manufacturing automation for smart manufacturing. Some high-precision applications, for example, robot drilling, robot machining, robot high-precision assembly, and robot inspection, require higher robot accuracy compared with traditional part handling operations. The monitoring and assessment of robot accuracy degradation become critical for these applications. A novel vision-based sensing system for 6-D measurement (six-dimensional x, y, z, yaw, pitch, and roll) is developed at the National Institute of Standards and Technology (NIST) to measure the dynamic high accuracy movement of a robot arm. The measured 6-D information is used for robot accuracy degradation assessment and improvement. This paper presents an automatic calibration method for a vision-based 6-D sensing system. The stereo calibration is separated from the distortion calibration to speed up the on-site adjustment. Optimization algorithms are developed to achieve high calibration accuracy. The vision-based 6-D sensing system is used on a Universal Robots (UR5) to demonstrate the feasibility of using the system to assess the robot’s accuracy degradation.


2021 ◽  
Author(s):  
Ying Liu ◽  
Yuwen Li ◽  
Zhenghao Zhuang ◽  
Tao Song

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6341
Author(s):  
Ying Liu ◽  
Yuwen Li ◽  
Zhenghao Zhuang ◽  
Tao Song

Robot positioning accuracy plays an important role in industrial automation applications. In this paper, a method is proposed for the improvement of robot accuracy with an optical tracking system that integrates a least-square numerical algorithm for the identification of kinematic parameters. In the process of establishing the system kinematics model, the positioning errors of the tool and the robot base, and the errors of the Denavit-Hartenberg parameters are all considered. In addition, the linear dependence among the parameters is analyzed. Numerical simulation based on a 6-axis UR robot is performed to validate the effectiveness of the proposed method. Then, the method is implemented on the actual robot, and the experimental results show that the robots can reach desired poses with an accuracy of ±0.35 mm for position and ±0.07° for orientation. Benefitting from the optical tracking system, the proposed procedure can be easily automated to improve the robot accuracy for applications requiring high positioning accuracy such as riveting, drill, and precise assembly.


Sign in / Sign up

Export Citation Format

Share Document