Modeling of surface roughness in a novel magnetorheological gear profile finishing process

Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.

2013 ◽  
Vol 633 ◽  
pp. 87-102 ◽  
Author(s):  
Ivana Atanasovska ◽  
Radivoje Mitrovic ◽  
Dejan Momcilovic

The gear tooth profile has an immense effect on the main operating parameters of gear pairs (load capacity, working life, efficiency, vibrations, etc). In current engineering research and practice, there is a strong need to develop methods for tooth profile optimization. In this paper a new method for selecting the optimal tooth profile parameters of spur gears is described. This method has been named the Explicit Parametric Method (EPM). The addendum modification coefficient, radius of root curvature, and pressure angle of the basic rack for cylindrical gears, have been identified as the main tooth profile parameters of spur gears. Therefore, the EPM selects the optimal values for these three tooth profile parameters. Special attention has been paid to develop a method of adjustment for the particular working conditions and explicit optimization requirements. The EPM for optimal tooth profile parameters of gears uses contact nonlinear Finite Element Analysis (FEA) for calculation of deformations and stresses of gear pairs, in addition to explicit comparative diagrams for optimal tooth profile parameter selection.


Author(s):  
Harpreet Singh ◽  
Pramod K Jain

Electrochemical honing of gears is a productive, high-accuracy, micro-finishing and long tool life gear finishing process in which material is removed by combined action of electrolytic dissolution and mechanical scrubbing action. The use of ultrasonic-assisted electrochemical honing of gears is first proposed, and it may help to enhance the process performances of the classical electrochemical honing process by scrubbing the complete surface of the gear tooth. In this technique, the honing gear is attached on the ultrasonic vibrator to provide the ultrasonic vibrations on the workpiece surface. The focus is on an optimization of the process parameters of ultrasonic-assisted electrochemical honing of bevel gear made of AISI 1040 carbon steel. The result of experiments reveals that the applied high ultrasonic frequency (kHz) on the workpiece has the maximum influence on the process performance. The maximum percentage improvement in average and maximum surface roughness using ultrasonic-assisted electrochemical honing of bevel gear is 91.04 and 71.98, respectively. The results confirm that the ultrasonic-assisted electrochemical honing can produce a better tooth surface roughness than the electrochemical honing. This will improve bevel gear efficiency and reliability in operation.


Author(s):  
Jadwiga Małgorzata Pisula ◽  
Grzegorz Budzik ◽  
Łukasz Przeszłowski

This paper presents findings concerning the accuracy of the geometry of cylindrical spur gear teeth manufactured with the direct metal laser sintering (DMLS) method. In addition, the results of the evaluation of the tooth surface geometric structure are presented in the form of selected two-dimensional and three-dimensional surface roughness parameters. An analysis of the accuracy of the fabricated gear teeth was performed after gear sand-blasting and gear tooth milling processes. Surface roughness was measured before and after sand-blasting and gear tooth milling. The test gear wheel was manufactured from GP1 high-chromium stainless steel on an EOS M270 machine.


1982 ◽  
Vol 104 (4) ◽  
pp. 759-764 ◽  
Author(s):  
J. J. Coy ◽  
C. Hu-Chih Chao

A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classic Hertzian solution for deflection. Many previous finite element studies of gear tooth deflection have not included the full effect of the Hertzian deflection. The present results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.


1994 ◽  
Vol 116 (3) ◽  
pp. 387-391 ◽  
Author(s):  
D. C. Xiao ◽  
C. Lee

This article introduces a method to calculate contours of form cutters for machining helical gears from given gear tooth profiles. It is essential to find a relationship between the cutter contour and the gear profile in order to carry out the calculation. The method introduced in this article uses contact points between the cutter rotary surface and the gear tooth surface to establish the relationship. A minimum distance principle is applied. Equations for the calculation are derived and an example is given.


1982 ◽  
Vol 25 (199) ◽  
pp. 110-117
Author(s):  
Yoji UMEZAKI ◽  
Taku UENO ◽  
Satoshi KASAI ◽  
Tin Maung Oo

2013 ◽  
Vol 823 ◽  
pp. 257-260
Author(s):  
Jie Wu ◽  
Jia Quan Wang

This article find that one of the effecting the double circular arc gear s running performance is the double circular arc gear tooth profile precision, through analysis to the running-in properties of double arc gear. The problems about tooth profile precision of gear hobs caused by the current profiling theory and approximate design method of gear hobs are analyzed. In the design of circular arc gear hob, use the space engagement theory, can eliminating the tooth error. Acquiring the equation of hobs basic of worm tooth surface by analytical and calculation that the establishment of basic gear rack and worm of hob meshing. The hob not only eliminate the tooth profile error in manufacturing, but also improve the running performance of double circular arc gear, and provides the theory evidence for engineering practice.


2012 ◽  
Vol 426 ◽  
pp. 159-162 ◽  
Author(s):  
Man Dong Zhang ◽  
H.H. Zhao ◽  
Ming Lv

Using electroplating CBN hard gear-honing-tools with standard involute, the vicinity of the workpiece tooth pitch circle will be a “mid concave” error, the root of the tooth will be a “dig root” error generally. For the formation factors of the error are more complex, it is difficult to calculate errors with an exact analytical method. To this end, by using Pro/E and ANSYS software, the contact analysis of electroplating CBN hard honing process was simulated. The honed tooth surface normal deformation analysis was the important means to determine extent of tooth profile error, through the normal deformation analysis based on simulation results, the location and extent of normal deformation was determined. Practice shows that the location and extent of the normal deformation has been a certain relationship with processing gear tooth profile errors. It is provided a theoretical basis to make the gear-honing tooth surface modification as possible.


2012 ◽  
Vol 579 ◽  
pp. 297-311
Author(s):  
Yi Hui Lee ◽  
Shih Syun Lin ◽  
Yi Pei Shih

During large-size gear manufacturing by form grinding, the actual tooth surfaces will differ from the theoretical tooth surface because of errors in the clamping fixture and machine axes and machining deflection. Therefore, to improve gear precision, the gear tooth deviations should be measured first and the flank correction implemented based on these deviations. To address the difficulty in large-size gear transit, we develop an on-machine scanning measurement for cylindrical gears on the five-axis CNC gear profile grinding machine that can measure the gear tooth deviations on the machine immediately after grinding, but only four axes are needed for the measurement. Our results can serve as a foundation for follow-up research on closed-loop flank correction technology. This measuring process, which is based on the AGMA standards, includes the (1) profile deviation, (2) helix deviation, (3) pitch deviation, and (4) flank topographic deviation. The mathematical models for measuring probe positioning are derived using the base circle method. We also calculate measuring positions that can serve as a basis for programming the NC codes of the measuring process. Finally, instead of the gear profile grinding machine, we used the six-axis CNC hypoid gear cutting machine for measuring experiments to verify the proposed mathematical models, and the experimental result was compared with Klingelnberg P40 gear measuring center.


Sign in / Sign up

Export Citation Format

Share Document