An improved IDA-PBC method with link-side damping injection and online gravity compensation for series elastic actuator

Author(s):  
Jiexin Zhang ◽  
Pingyun Nie ◽  
Bo Zhang

Elastic elements in series elastic actuator (SEA) will cause residual vibration in position control. Incorporating link-side damping injection and friction compensation, we propose an improved interconnection and damping assignment passivity-based control (IDA-PBC+) method to suppress residual vibration. Damping on the motor side and link side can be adjusted simultaneously. In addition, the desired motor-side trajectory planning and online gravity compensation are also introduced to improve control performance and steady-state accuracy. The effectiveness of the proposed method in suppressing residual vibration is experimentally verified with a two-degree-of-freedom SEA device.

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Brian T. Knox ◽  
James P. Schmiedeler

This paper presents a novel series-elastic actuator (SEA) design that uses a spiral torsion spring to achieve drivetrain compliance in a compact and efficient mechanism. The SEA utilizes electromechanical actuation and is designed for use in the experimental biped robot KURMET for investigating dynamic maneuvers. Similar to helical torsion springs, spiral torsion springs are particularly applicable for legged robots because they preserve the rotational motion inherent in electric motors and articulated leg joints, but with less drivetrain backlash and unwanted coil interaction under load than helical torsion springs. The general spiral torsion spring design equations are presented in a form convenient for robot design, along with a detailed discussion of the mechanism surrounding the spring. Also, the SEA mechanism has a set of unidirectional hardstops that further improves the position control by allowing series-elasticity in only one rotational direction.


Author(s):  
Hanseung Woo ◽  
Kyoungchul Kong

Purpose Actuators for human-interactive robot systems require transparency and guaranteed safety. An actuation system is called transparent when it is able to generate an actuation force as desired without any actuator dynamics. The requirements for the transparent actuation include high precision and large frequency bandwidth in actuation force generation, zero mechanical impedance and so on. In this paper, a compact rotary series elastic actuator (cRSEA) is designed considering the actuation transparency and the mechanical safety. Design/methodology/approach The mechanical parameters of a cRSEA are optimally selected for the controllability, the input and output torque transmissibility and the mechanical impedance by simulation study. A mechanical clutch that automatically disengages the transmission is devised such that the human is mechanically protected from an excessive actuation torque due to any possible controller malfunction or any external impact from a collision. The proposed cRSEA with a mechanical clutch is applied to develop a wearable robot for incomplete paraplegic patients. To verify torque tracking performance and disengagement of the mechanical clutch, experiments were conducted. Findings As the effects of the gear ratio, N1, on the four control performance indexes are conflicting, it should be carefully selected such that the controllability and the output torque transmissibility are maximized, while the disturbance torque transmissibility and the mechanical impedance are minimized. When the four control performance indexes were equally weighted, N1 was selected as 30. Experimental results showed that the designed cRSEA provided good control performances and the mechanical clutch worked properly. Originality/value It is important to design the actuator so as to maximize the control performance in accordance with its purpose. This paper presents the design guidelines for the SEA by introducing four control performance indexes and analyzing how the performance indexes vary according to the change of design parameter. From the viewpoint of practicality, a mechanical clutch design method that prevents excessive torque from being transmitted to the wearer and an analysis to solve the locking phenomenon when using a worm gear are presented, and a design method of SEA satisfying both control performance and practicality is presented.


Sign in / Sign up

Export Citation Format

Share Document