Characteristic study of modified nano CuO powder-based paraffin composite and its experimental investigation of melting/solidification behavior for mobilized cold thermal storage systems

Author(s):  
Shanmuga Sundaram Anandan ◽  
Jagannathan Sundarababu ◽  
Rajesh Ravi ◽  
Kanchana Venkatesan

The low thermal conductivity of Phase Change Materials (PCM) reduces its performance and remains a challenging issue. In the present study, modified nano copper oxide powder (CuO) with various weight percentages is dispersed into paraffin wax to form Nano-PCM composites (NPCM). Transmission Electron Microscopy analysis showed the uniform dispersion of modified CuO and spherical in structure. Diffraction Scanning Calorimeter analysis (DSC) showed a trivial difference in the melting point of PCM and NPCM. The peak melting temperature of PCM was 18.56°C and for NPCM with 1% concentration was 17.14°C. The thermal conductivity of NPCM in solid and liquid states was high when compared to that of pure PCM. The thermal conductivity of NPCM with a 1% concentration is enhanced by 52% in a solid state and 20% in a liquid state. Solidification/Melting experiments conducted at different bath temperatures such as 15°C, 17°C, and 19°C for PCM and NPCM revealed that the solidification period and melting period reduced with an increase in concentrations of modified Nano CuO due to augmented heat transfer rates. The solidification time for NPCM with 1% concentration is reduced by 18.33% for discharging temperature 25°C, and melting time are reduced by 16.6% for charging temperature.

2011 ◽  
Vol 10 (01n02) ◽  
pp. 23-28
Author(s):  
RAVI BHATIA ◽  
V. PRASAD ◽  
M. REGHU

High-quality multiwall carbon nanotubes (MWNTs) were produced by a simple one-step technique. The production of MWNTs was based on thermal decomposition of the mixture of a liquid phase organic compound and ferrocene. High degree of alignment was noticed by scanning electron microscopy. The aspect ratio of as-synthesized MWNTs was quite high (more than 4500). Transmission electron microscopy analysis showed the presence of the catalytic iron nanorods at various lengths of MWNTs. Raman spectroscopy was used to know the quality of MWNTs. The ratio of intensity of the G-peak to the D-peak was very high which revealed high quality of MWNTs. Magnetotransport studies were carried out at low temperature and a negative MR was noticed.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1332
Author(s):  
Florian Riedlsperger ◽  
Bernadette Gsellmann ◽  
Erwin Povoden-Karadeniz ◽  
Oriana Tassa ◽  
Susanna Matera ◽  
...  

A thermokinetic computational framework for precipitate transformation simulations in Ta-containing martensitic Z-steels was developed, including Calphad thermodynamics, diffusion mobility data from the literature, and a kinetic parameter setup that considered precipitation sites, interfacial energies and dislocation density evolution. The thermodynamics of Ta-containing subsystems were assessed by atomic solubility data and enthalpies from the literature as well as from the experimental dissolution temperature of Ta-based Z-phase CrTaN obtained from differential scanning calorimetry. Accompanied by a comprehensive transmission electron microscopy analysis of the microstructure, thermokinetic precipitation simulations with a wide-ranging and well-documented set of input parameters were carried out in MatCalc for one sample alloy. A special focus was placed on modelling the transformation of MX into the Z-phase, which was driven by Cr diffusion. The simulation results showed excellent agreement with experimental data in regard to size, number density and chemical composition of the precipitates, showing the usability of the developed thermokinetic simulation framework.


Author(s):  
Hongyan Xu ◽  
Jing Guo ◽  
Qing Meng ◽  
Zhanling Xie

<i>Morchella</i> is a genus of edible fungi with strong resistance to Cd and the ability to accumulate it in the mycelium. However, the mechanisms conferring Cd resistance in <i>Morchella</i> are unknown. In the present study, morphological and physiological responses to Cd were evaluated in the mycelia of <i>Morchella spongiola</i>. Variations in hyphal micro-morphology including twisting, folding and kinking in mycelia exposed to different Cd concentrations (0.15, 0.9, 1.5, 2.4, 5.0 mg/L) were observed using scanning electron microscopy. Deposition of Cd precipitates on cell surfaces (at Cd concentrations > 2.4 mg/L) was shown by SEM-EDS. Transmission electron microscopy analysis of cells exposed to different concentrations of Cd revealed the loss of intracellular structures and the localization of Cd depositions inside/outside the cell. FTIR analysis showed that functional groups such as C=O, -OH, -NH and -CH could be responsible for Cd binding on the cell surface of <i>M. spongiola</i>. In addition, intracellular accumulation was observed in cultures at low Cd concentrations (< 0.9 mg/L), while extracellular adsorption occurred at higher concentrations. These results provide valuable information on the Cd tolerance mechanism in <i>M. spongiola</i> and constitute a robust foundation for further studies on fungal bioremediation strategies.


Sign in / Sign up

Export Citation Format

Share Document