Design and test methods of rubber-track conversion system

Author(s):  
Kai Lv ◽  
Xihui Mu ◽  
Lishun Li ◽  
Wenbin Xue ◽  
Zhiyuan Wang ◽  
...  

Rubber-track conversion system enables the vehicle to have stronger rough terrain trafficability than tire. Its roller wheels swing with terrain contours to comfort ride and steady traction. However, this will increase the detracking risk and aggravate the rubber track repeated stretch. To minimize variations of the track perimeter, a systematic design method for rubber-track conversion system was proposed to harmonize the component parameters related to relative movements. Furthermore, its tensioning system was optimized. Using a multi-camera video measurement system, the track perimeter is calibrated on a flat steel plate and track perimeter variations are measured on various terrains. Results show that the track perimeter remains unchanged when roller wheels swing on rugged terrains, and the proposed design method is free from terrain parameters and obstacle types. After reliability running test over 1000 km on various terrains, the measurements above were carried out again. The results are consistent with those before the reliability test, which further proves the effectiveness of the proposed design method.

Author(s):  
Xin Ma ◽  
Zhongpei Ning ◽  
Honggang Chen ◽  
Jinyang Zheng

Ultra-High Pressure Vessel (UHPV) with self-protective Flat Steel Ribbons (FSR) wound and Tooth-Locked Quick-Actuating (TLQA) end closure is a new type of vessel developed in recent years. When the structural parameters of its TLQA and Buttress Thread (BT) end closure are determined using the ordinary engineering design method, Design by Analysis (DBA) shows that the requirement on fatigue life of this unique UHPV could hardly be satisfied. To solve the above problem, an integrated FE modeling method has been proposed in this paper. To investigate the fatigue life of TLQA and BT end closures of a full-scale unique UHPV, a three-dimensional (3-D) Finite Element (FE) solid model and a two-dimensional (2-D) FE axisymmetric model are built in FE software ANSYS, respectively., Nonlinear FE analysis and orthogonal testing are both conducted to obtain the optimum structure strength, in which the peak stress in the TLQA or BT end closure of the unique UHPV is taken as an optimal target. The important parameters, such as root structure of teeth, contact pressure between the pre-stressed collar and the cylinder end, the knuckle radius, the buttress thread profile and the local structure of the cylinder, are optimized. As a result, both the stress distribution at the root of teeth and the axial load carried by each thread are improved. Therefore, the load-carrying capacity of the end closure has been reinforced and the fatigue life of unique UHPV has been extended.


2008 ◽  
Vol 75 (4) ◽  
Author(s):  
Chuanxiang Zheng ◽  
Shaohui Lei

Stress analysis of flat steel ribbon wound pressure vessels (FSRWPVs) is very difficult because they have a special discrete structure and complex pretensions exit in the flat steel ribbons, which are wound around the inner shell layer by layer. An analytical multilayered model for stress analysis is presented in this paper, which involves the effect of prestress in every flat steel ribbon layer as well as in the inner shell. Based on this model, an optimal design method for FSRWPV is suggested, which can assure a reasonable stress level and distribution along the wall thickness during the operation. A practical example of a large FSRWPV is finally given for illustration.


Author(s):  
H. H. (Bert) Snijder ◽  
S. N. M. (Simon) Wijte

<p>Rainwater causes flat roofs to deflect resulting in ponding. Due to the deflection, extra rainwater flows to the lower area of the roof, resulting in a larger loading with a larger deflection, resulting in more rainwater flowing towards this area, etc. Failure of flat roof structures due to ponding under heavy rainfall frequently happens in The Netherlands with an average of 15 incidents each year in the last decades. An increase in rain intensity due to climate change is expected to increase these numbers in the near future. Nevertheless, ponding on light roof structures is still underestimated as a significant load case in design. Moreover, the design calculations necessary are complex due to geometrical non-linear behavior. A number of software programs are available, but to keep insight in the process of rainwater ponding, a simple analytical design method for ponding of flat (steel) roof structures was developed including the interaction between main girders and purlins. The paper presents this method which avoids an iterative calculation procedure. Subsequently, this method is used to analyze a roof structure concluding that the interaction between main girders and purlins cannot be neglected.</p>


Sign in / Sign up

Export Citation Format

Share Document