Adaptive type-2 fuzzy sliding mode control of steer-by-wire systems with event-triggered communication

Author(s):  
Bingxin Ma ◽  
Yongfu Wang

The steering-by-wire (SbW) system is one of the main subsystems of automatic vehicles, realizing the steering control of autonomous vehicles. This paper proposes an event-triggered adaptive sliding mode control for the SbW system subject to the uncertain nonlinearity, time-varying disturbance, and limited communication resources. Firstly, an event-triggered nested adaptive sliding mode control is proposed for SbW systems. The uncertain nonlinearity is approximated by the interval type-2 fuzzy logic system (IT2 FLS). The time-varying disturbance, modeling error, and event-triggering error can be offset by robust terms of sliding mode control. The key advantage is that the high-frequency switching of sliding mode control only appears on the time derivate of control input without increasing the input-output relative degree of closed-loop SbW systems, such that the chattering phenomenon can be eliminated. Finally, theoretical analysis shows that the practical finite-time stability of the closed-loop SbW system can be achieved, and communication resources in the controller-to-actuator channels can be saved while avoiding the Zeno-behavior. Numerical simulations and experiments are given to evaluate the effectiveness of the proposed method.

Author(s):  
Guiling Li ◽  
Chen Peng

This paper investigates the robust stabilization of the adaptive sliding mode control for a class of linear systems subjected to external disturbance via event-triggered communication (ETC) scheme. First, in order to reduce the bandwidth utilization, a discrete ETC scheme is proposed and the networked sliding mode function is derived using the ETC scheme. Based on the derived sliding mode function, a reduced-order networked sliding mode dynamics with communication delay is established. Second, by constructing a Lyapunov–Krasovskii functional (LKF), asymptotic stability and stabilization criteria of the reduced-order sliding mode dynamics are given in the form of linear matrix inequalities. According to the stabilization result, a novel event-triggered-based adaptive sliding mode controller is designed while guaranteeing the reachability of the sliding surface. Finally, simulation results illustrate the effectiveness and merit of the developed method.


2014 ◽  
Vol 556-562 ◽  
pp. 2466-2469
Author(s):  
Yue Fei Wu ◽  
Da Wei Ma ◽  
Gui Gao Le

A novel adaptive sliding mode control is proposed to guarantee high precision and robustness of servo system of rocket launcher. An improved PID switching function is designed to smooth control input, meanwhile Chebyshev neural network is adopted to identify the system’s Jacobian information, and parameters of controller can be acquired by self-tuning law which can be derived by Lyapunov theory. Simulation results show the control input is chattering-free, and both load disturbance and parameter perturbation can be compensated.


Sign in / Sign up

Export Citation Format

Share Document