A new approach in UAV path planning using Bezier–Dubins continuous curvature path

Author(s):  
A Askari ◽  
M Mortazavi ◽  
HA Talebi ◽  
A Motamedi
Author(s):  
Chalongrath Pholsiri ◽  
Chetan Kapoor ◽  
Delbert Tesar

Robot Capability Analysis (RCA) is a process in which force/motion capabilities of a manipulator are evaluated. It is very useful in both the design and operational phases of robotics. Traditionally, ellipsoids and polytopes are used to both graphically and numerically represent these capabilities. Ellipsoids are computationally efficient but tend to underestimate while polytopes are accurate but computationally intensive. This article proposes a new approach to RCA called the Vector Expansion (VE) method. The VE method offers accurate estimates of robot capabilities in real time and therefore is very suitable in applications like task-based decision making or online path planning. In addition, this method can provide information about the joint that is limiting a robot capability at a given time, thus giving an insight as to how to improve the performance of the robot. This method is then used to estimate capabilities of 4-DOF planar robots and the results discussed and compared with the conventional ellipsoid method. The proposed method is also successfully applied to the 7-DOF Mitsubishi PA10-7C robot.


Author(s):  
Madhavan Shanmugavel ◽  
Antonios Tsourdos ◽  
Rafal Zbikowski ◽  
Brian White

This paper describes a novel idea of path planning for multiple UAVs (Unmanned Aerial Vehicles). The path planning ensures safe and simultaneous arrival of the UAVs to the target while meeting curvature and safety constraints. Pythagorean Hodograph (PH) curve is used for path planning. The PH curve provides continuous curvature of the paths. The offset curves of the PH paths define safety margins around and along each flight path. The simultaneous arrival is satisfied by generation of paths of equal lengths. This paper highlights the mathematical property — changing path-shape and path-length by manipulating the curvature and utilises this to achieve the following constraints: (i) Generation of paths of equal length, (ii) Achieving maximum bound on curvature, and, (iii) Meeting the safety constraints by offset paths.


2013 ◽  
Vol 467 ◽  
pp. 475-478
Author(s):  
Feng Yun Lin

This paper presents a method of time optimal path planning under kinematic, limit heat characteristics of DC motor and dynamic constrain for a 2-DOF wheeled. Firstly the shortest path is planned by using the geometric method under kinematic constraints. Then, in order to make full use of motors capacity we have the torque limits under limit heat characteristics of DC motor, finally the velocity limit and the boundary acceleration (deceleration) are determined to generate a time optimal path.


Author(s):  
Paresh Shah ◽  
Jian S. Dai

Abstract The paper proposes a new approach for path planning based upon the finite twist mapping spaces and discusses the selective and desirable orientation in the planning. In the FT mapping space, positions and orientations are presented in conjunction with configuration space with the dexterous and partial dexterous workspaces. The path planning can hence be made with a range of dexterity of a manipulator to meet a desirable orientation. The work also extends to redundant manipulators.


Sign in / Sign up

Export Citation Format

Share Document