Numerical analysis of a Pelton bucket free surface sheet flow and dynamic performance affected by operating head

Author(s):  
Chongji Zeng ◽  
Yexiang Xiao ◽  
Zhengwei Wang ◽  
Jin Zhang ◽  
Yongyao Luo

The present paper aims to find out the influence of operating head on the rotating bucket free surface sheet flow and hydrodynamics performance for a Pelton turbine. Three-dimensional unsteady air-water two-phase flow simulations in the rotating buckets were performed by adopting the shear stress transport curvature correction turbulence model and homogenous model. The sensitivities of the unsteady simulation results to moving mesh resolution and computational fluid dynamics solver time-step have been evaluated to discuss the effect of Courant–Friedrichs–Lewy conditions on the two-phase flow simulation. The accuracy of the numerical predicted flow pattern and the hydrodynamic performance results are reasonable when compared with the experimental data. The simulation results indicate that the remaining kinetic energy carried by the outflow under the nondesigned water head is the main reason for the efficiency loss in the Pelton turbine. Under low water head conditions, jet distortion caused by the Coanda effect and flow interference will lead to more severe efficiency deterioration.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Jianjian Xin ◽  
Fulong Shi ◽  
Qiu Jin ◽  
Lin Ma

Abstract A three-dimensional (3D) gradient-augmented level set (GALS) two-phase flow model with a pretreated reinitialization procedure is developed to simulate violent sloshing in a cuboid tank. Based on a two-dimensional (2D) GALS method, 3D Hermite, and 3D Lagrange polynomial schemes are derived to interpolate the level set function and the velocity field at arbitrary positions over a cell, respectively. A reinitialization procedure is performed on a 3D narrow band to treat the strongly distorted interface and improve computational efficiency. In addition, an identification-correction technique is proposed and incorporated into the reinitialization procedure to treat the tiny droplet which can distort the free surface shape, even lead to computation failure. To validate the accuracy of the present GALS method and the effectiveness of the proposed identification-correction technique, a 3D velocity advection case is first simulated. The present method is validated to have better mass conservation property than the classical level set and original GALS methods. Also, distorted and thin interfaces are well captured on all grid resolutions by the present GALS method. Then, sloshing under coupled surge and sway excitation, sloshing under rotational excitation are simulated. Good agreements are obtained when the present wave and pressure results are compared with the experimental and numerical results. In addition, the highly nonlinear free surface is observed, and the relationship between the excitation frequency and the impulsive pressure is investigated.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987173 ◽  
Author(s):  
Liang Dong ◽  
Jiawei Liu ◽  
Houlin Liu ◽  
Cui Dai ◽  
Dmitry Vladimirovich Gradov

In order to reveal the gas–liquid two-phase flow pattern of inverted-umbrella aerator, the high-speed photography technology, particle image velocimetry, and Volume of Fluid model are employed to capture the free-surface dynamics and velocity distribution. The Computational Fluid Dynamics simulations are validated by experimental data and the results are in good agreement with experiment. The simulation results of flow field, streamline distribution, velocity distribution, free-surface deformation, and turbulence kinetic energy are analyzed at in time and at radial profiles sampled at several vertical positions. Back surface of each blade revealed the area of low-pressure, which can drag air into water directly from surface and thus enhance liquid aeration and oxygenation capacity. Lifting capacity of the inverted-umbrella aerator is enough to get the liquid at the bottom of the aeration tank accelerated toward liquid surface generating the hydraulic jump. As a result, liquid phase splashes capture portions of air promoting aeration of the solution. A clear circulation whirlpool is formed during the process. The circulation whirlpool starts at the bottom of the impeller moving upward along the plate until the outer edge of the impeller, which is close to the free surface. The circulation whirlpool indicates that the inverted-umbrella aerator plays a significant role in shallow aeration. The turbulence intensity created by the impeller gradually reduces with depth. The position ( z = 0.65 H) is the watershed in the tank. The oxygen mass transfer mainly occurs in the layer above watershed.


2012 ◽  
Vol 232 ◽  
pp. 279-283 ◽  
Author(s):  
Wei Zhang ◽  
You Hong Tang ◽  
Cheng Bi Zhao ◽  
Cheng Zhang

A numerical model based on the two-phase flow model for incompressible viscous fluid with a complex free surface has been developed in this study. The two-step projection method is employed to solve the Navier–Stokes equations in the numerical solutions, and finite difference method on a staggered grid is used throughout the computation. The two-order accurate volume of fluid (VOF) method is used to track the distorted and broken free surfaces. The two-phase model is first validated by simulating the dam break over a dry bed, in which the numerical results and experimental data agree well. Then 2-D fluid sloshing in a horizontally excited rectangular tank at different excitation frequencies is simulated using this two-phase model. The results of this study show that the two-phase flow model with VOF method is a potential tool for the simulation of nonlinear fluid sloshing. These studies demonstrate the capability of the two-phase model to simulate free surface flow problems with considering air movement effects.


Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs

Wave breaking is a complex two-phase flow process that strongly influences the air-water interaction. A number of physical processes are involved in the exchange of mass, momentum and energy between air and water interaction during the wave breaking process. In shallow waters, waves undergo different transformation processes such as shoaling, refraction, diffraction and breaking due to their non-linear interaction with the seabed. Thus, the associated hydrodynamics are rather complicated to understand when compared to wave breaking in deep water (Lin, 2008). In the present numerical study, a two phase flow CFD model REEF3D (Bihs et al. 2016) is used to model and investigate the hydrodynamics of spilling and plunging breakers over a slope. An accurate modeling of the wave breaking process is still highly demanding due to the strong non-linear air-water interaction and turbulent production at the free surface. The numerical wave tank is based on the incompressible Reynolds Averaged Navier-Stokes (RANS) equations together with the level set method for free surface and the k-ω model for turbulence (Alagan Chella et al. 2015). The model uses the 5th-order Weighted Essentially Non- Oscillatory (WENO) scheme for the convective discretization and the 3rd-order TVD Runge Kutta Scheme for the time discretization. A staggered grid method is employed in the model in order to achieve a stronger coupling between the pressure and velocity. The model is fully parallelized with the domain decomposition method and MPI (Message passing interface).


2020 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave A. May ◽  
Richard F. Katz

<p>All divergent plate boundaries are associated with magmatism, yet its role in their dynamics and deformation is not known. The RIFT-O-MAT project seeks to understand how magmatism promotes and shapes rifts in continental and oceanic lithosphere by using models that build upon the two-phase flow theory of magma/rock interaction. Numerical models of magma segregation from partially molten rocks are usually based on a system of equations for conservation of mass, momentum and energy. One key challenge of these problems is to compute a mass-conservative flow field that is suitable for advecting thermochemically active material that feeds back on the flow. This feedback tends to destabilise the coupled mechanics+thermochemical solver. </p><p>Staggered grid finite-volume/difference methods are: mimetic (i.e., discrete differential operators mimic the properties of the continuous differential operators); conservative by construction; inf-sup stable and "light weight" (small stencil) thus they are well suited to address these problems. We present a new framework for finite difference staggered grids for solving partial differential equations (FD-PDE) that allows testable and extensible code for single-/two-phase flow magma dynamics. We build the framework using PETSc (Balay et al., 2019) and make use of the new features for staggered grids, such as DMStag. The aim is to separate the user input from the discretization of governing equations, allow for extensible development, and implement a robust framework for testing. Any customized applications can be created easily, without interfering with previous work or tests.</p><p>Here, we present benchmark and performance results with our new FD-PDE framework. In particular, we focus on preliminary results of a two-phase flow mid-ocean ridge (MOR) model with a free surface and extensional boundary conditions. We compare flow calculations with previous work on MORs that either employed two-phase flow dynamics with kinematic boundary conditions (i.e., corner flow, Spiegelman and McKenzie, 1987), or single-phase flow dynamics with free surface (i.e., Behn and Ito, 2008). In the latter case, the effect of magma is parameterised according to a priori expectations of its role. </p><p> </p><p>Balay et al. (2019), PETSc Users Manual, ANL-95/11 - Revision 3.12, 2019.</p><p>Spiegelman and McKenzie (1987), EPSL, 83 (1-4), 137-152.</p><p>Behn and Ito (2008), Geochem. Geophys. Geosyst., 9, Q08O10.</p>


Author(s):  
Hui Ding ◽  
Yu Jiang ◽  
Hao Wu ◽  
Jian Wang

Due to the complex two phase flow, CFD simulation of liquid ring pump used to be extremely challenging. Using a recently developed Volume of Fluid (VOF) two phase flow model, this paper presents a 3D transient CFD model for a water ring vacuum pump. The test simulations show that the new VOF model is very robust and can catch most of the important physics when applied to a industrial water ring vacuum pump. Model formulation and problem setup will be presented in detail in the paper. Important issues that could affect the simulation results will be discussed. Water ring pump flow field characteristics revealed from simulation results will be summarized with explanation. And finally the simulation results will be compared with experiment test data.


Sign in / Sign up

Export Citation Format

Share Document