Event-triggered distributed filtering for Markov jump systems over sensor networks

Author(s):  
Fengzeng Zhu ◽  
Li Peng ◽  
Ruitian Yang

This article deals with the distributed filtering problem for a class of discrete-time Markov jump systems over sensor networks. First, in the distributed filtering network, each local filter simultaneously fuses the estimation and measurement from itself and neighboring nodes to achieve the system state estimation. And each sensor intelligent node is embedded with an event-triggered sampling mechanism, which can reduce the computation load or saving limited network bandwidth. Then, we use Bernoulli stochastic variables to describe whether the filtering network can successfully receive the system jump modes. Next, based on the Lyapunov stability theory, we design a distributed filter dependent on partial system modes, which has the exponential stability in mean square and [Formula: see text] performance. Finally, all desired estimator parameters can be obtained by solving a set of linear matrix inequalities. Moreover, two numerical examples are given to illustrate the effectiveness of the distributed [Formula: see text] filtering design approach.

Author(s):  
Xiaoxiao Xu ◽  
Xiongbo Wan ◽  
◽  
◽  

The fault detection (FD) problem is investigated for event-triggered discrete-time Markov jump systems (MJSs) with hidden-Markov mode observation. A dynamic-event-triggered mechanism, which includes some existing ones as special cases, is proposed to reduce unnecessary data transmissions to save network resources. Mode observation of the MJS by the FD filter (FDF) is governed by a hidden Markov process. By constructing a Markov-mode-dependent Lyapunov function, a sufficient condition in terms of linear matrix inequalities (LMIs) is obtained under which the filtering error system of the FD is stochastically stable with a prescribed H∞ performance index. The parameters of the FDF are explicitly given when these LMIs have feasible solutions. The effectiveness of the FD method is demonstrated by two numerical examples.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 248-258
Author(s):  
Wenqian Xie ◽  
Yong Zeng ◽  
Kaibo Shi ◽  
Xin Wang ◽  
Qianhua Fu

2017 ◽  
Vol 40 (9) ◽  
pp. 2789-2797 ◽  
Author(s):  
Jingyu Li ◽  
Liang Shen ◽  
Fengqi Yao ◽  
Huanyu Zhao ◽  
Jing Wang

This paper studies the issue of finite-time observer-based control via an event-triggered scheme for Markov jump repeated scalar nonlinear systems. An observer-based controller via an event-triggered scheme is proposed, which can save the limited network communication bandwidth effectively, so that the resulting error system is stochastically finite-time bounded. Based on the positive definite diagonally dominant matrix and the Lyapunov function technique, a sufficient condition is presented for the solvability of the addressed problem, and the desired observer-based controller can be constructed via a convex optimization problem. In the end, a simulation example is employed to show the validity and practicability of the proposed design method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng Gong ◽  
Yi Zeng

This paper investigates theH∞filtering problem of discrete singular Markov jump systems (SMJSs) with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition onH∞-disturbance attenuation is presented, in which both stability and prescribedH∞performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependentH∞filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI). Finally, an example is given to illustrate the effectiveness of the result.


Sign in / Sign up

Export Citation Format

Share Document