intelligent node
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yue Zhao

Based on the principle of cluster wireless sensor network, this article introduces typical routing protocols in wireless sensors, and wireless sensor network protocol in detail analyzes their advantages and disadvantages and addresses their shortcomings. First, in the clustering network, a uniform clustering protocol with multiple hops in the circular network is proposed. The circular network is divided into rings of equal width, and clusters of equal size are set on different rings. Secondly, the ordinary nodes on each layer of the ring send the collected data to the auxiliary intelligent nodes in the cluster in a single-hop manner, and the auxiliary intelligent nodes located on the outer ring transfer the data to the auxiliary intelligent nodes located on the adjacent inner ring. Finally, on the basis of studying the clustering network protocol, this paper proposes a new clustering routing algorithm, a multihop adaptive clustering routing algorithm. The simulation results show that the algorithm can effectively extend the life of the network, save network energy consumption, and achieve network load balance. At the same time, the initial energy of the auxiliary intelligent node is set according to the energy consumption of the ordinary node and the relative distance between the auxiliary intelligent node and the base station on each layer of the ring. The theoretical and simulation results prove that, compared with the clustered network and auxiliary intelligent nodes, the clustered network can extend the life of the network.


2021 ◽  
Vol 16 (1) ◽  
pp. 104-113
Author(s):  
Erying Shi

Optoelectronic hybrid network technology is mixed with pure electric packet switching network, which can improve network capacity and reduce power consumption. However, the long configuration time and complex management of optical circuit switch affect the performance of optoelectronic hybrid network. Therefore, a new optoelectronic hybrid network architecture (BET) is designed. The network architecture consists of Ethernet electric packet switching network and optical wavelength routing network. The signal receiving and dispatching of optical routing network is realized by circular arrayed waveguide grating router. Based on the characteristics of wavelength cycling routing, there is no need to adjust the routing of optical signals to the destination port, that is, there is no need to configure the optical wavelength routing network. At the same time, an intelligent node dynamic reconfiguration (RG) algorithm is designed to improve the resource utilization of optical nodes. In this method, the network link utilization, cache occupancy, and network load are taken into account to adjust the distribution of optical nodes in the optoelectronic hybrid network. In the process of the experiment, by changing the message length, it is found that the optical wavelength routing network can achieve large capacity and new-type transmission and effectively reduce the delay at the same time; on the optoelectronic hybrid network, with the help of Hadoop platform, distributed cluster is built and used to transmit an XML data encoding (ED code), solve the finite state transducers (FST) and encode them. Compared with the traditional electric packet switching network, the transmission delay of ED code is greatly reduced after the introduction of optical circuit switch, and the efficiency of FST solution and coding calculation is improved by at least 30%.


Author(s):  
Fengzeng Zhu ◽  
Li Peng ◽  
Ruitian Yang

This article deals with the distributed filtering problem for a class of discrete-time Markov jump systems over sensor networks. First, in the distributed filtering network, each local filter simultaneously fuses the estimation and measurement from itself and neighboring nodes to achieve the system state estimation. And each sensor intelligent node is embedded with an event-triggered sampling mechanism, which can reduce the computation load or saving limited network bandwidth. Then, we use Bernoulli stochastic variables to describe whether the filtering network can successfully receive the system jump modes. Next, based on the Lyapunov stability theory, we design a distributed filter dependent on partial system modes, which has the exponential stability in mean square and [Formula: see text] performance. Finally, all desired estimator parameters can be obtained by solving a set of linear matrix inequalities. Moreover, two numerical examples are given to illustrate the effectiveness of the distributed [Formula: see text] filtering design approach.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 933 ◽  
Author(s):  
Linhui Wang ◽  
Xuejun Yue ◽  
Yongxin Liu ◽  
Jian Wang ◽  
Huihui Wang

The rapid development of vision sensor based on artificial intelligence (AI) is reforming industries and making our world smarter. Among these trends, it is of great significance to adapt AI technologies into the intelligent agricultural management. In smart agricultural aviation spraying, the droplets’ distribution and deposition are important indexes for estimating effectiveness in plant protection process. However, conventional approaches are problematic, they lack adaptivity to environmental changes, and consumes non-reusable test materials. One example is that the machine vision algorithms they employ can’t guarantee that the division of adhesive droplets thereby disabling the accurate measurement of critical parameters. To alleviate these problems, we put forward an intelligent visual droplet detection node which can adapt to the environment illumination change. Then, we propose a modified marker controllable watershed segmentation algorithm to segment those adhesive droplets, and calculate their characteristic parameters on the basis of the segmentation results, including number, coverage, coverage density, etc. Finally, we use the intelligent node to detect droplets, and then expound the situation that the droplet region is effectively segmented and marked. The intelligent node has better adaptability and robustness even under the condition of illumination changing. The large-scale distributed detection result indicates that our approach has good consistency with the non-recyclable water-sensitive paper approach. Our approach provides an intelligent and environmental friendly way of tests for spraying techniques, especially for plant protection with Unmanned Aerial Vehicles.


2018 ◽  
Vol 5 (2) ◽  
pp. 31-37
Author(s):  
Gábor Bohács ◽  
Dániel Gáspár ◽  
Dorina Kánya

Author(s):  
Mitsutaka Kimura ◽  
Mitsuhiro Imaizumi ◽  
Toshio Nakagawa

Recently, cloud computing has been widely used for the purpose of protecting client data on the Internet [A. Weiss, Computing in the clouds, netWorker11 (2007) 16–25; M. Armbrust et al., Above the clouds: A Berkeley view of cloud computing, Technical Report UCV/EECS-2009-28, University of California at Berkeley (2009)]. But when a client receives network service, response time may be slow because the data center is located in a remote place. In order to solve the problem, real-time distributed systems for cloud computing has been proposed [M. Okuno, D. Ito, H. Miyamoto, H. Aoki, Y. Tsushima and T. Yazaki, A study on distributed information and communication processing architecture for next generation cloud system, IEICE Tech. Report109(A48) (2010) 241–246; M. Okuno, S. Tsutsumi and T. Yazaki, A study of high available distributed network processing technique for next generation cloud system, IEICE Tech. Report111(8) (2011) 25–30; S. Yamada, J. Marukawa, D. Ishii, S. Okamoto and N. Yamanaka, A study of parallel transmission technique with GMPLS in intelligent cloud network, IEICE Tech. Report109(455) (2010) 51–56]. The cloud computing system consists of some intelligent nodes as well as a data center. The data center manages all client data. The intelligent node provides client service near clients. It enables to provide client service at short response time [M. Okuno, D. Ito, H. Miyamoto, H. Aoki, Y. Tsushima and T. Yazaki, A study on distributed information and communication processing architecture for next generation cloud system, IEICE Tech. Report109(448) (2010) 241–246]. We considered the reliability model of distributed information processing for cloud computing, derived cost effectiveness and discussed the optimal replication interval to minimize it [M. Kimura, M. Imaizumi and T. Nakagawa, Reliability modeling of distributed information processing for cloud computing, in Proc. 20th ISSAT Int. Conf. Reliability and Quality in Design (2014), pp. 183–187]. Authors had dealt with the server system with one failure mode. In this paper, we consider the reliability model of a real-time distributed system with n intelligent nodes and formulate a stochastic model of the server system with n intelligent nodes for changing the other normal intelligent node at failure. We derive the expected numbers of the replication and of updating the client data. Further, we derive the expected cost and discuss an optimal replication interval to minimize it. Next, we derive the cost effectiveness and discuss an optimal number of intelligent nodes to minimize it.


Sign in / Sign up

Export Citation Format

Share Document