Poisson and negative binomial item count techniques for surveys with sensitive question

2014 ◽  
Vol 26 (2) ◽  
pp. 931-947 ◽  
Author(s):  
Guo-Liang Tian ◽  
Man-Lai Tang ◽  
Qin Wu ◽  
Yin Liu

Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents’ privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.

2005 ◽  
Vol 2005 (5) ◽  
pp. 717-728 ◽  
Author(s):  
K. Neammanee

LetX1,X2,…,Xnbe independent Bernoulli random variables withP(Xj=1)=1−P(Xj=0)=pjand letSn:=X1+X2+⋯+Xn.Snis called a Poisson binomial random variable and it is well known that the distribution of a Poisson binomial random variable can be approximated by the standard normal distribution. In this paper, we use Taylor's formula to improve the approximation by adding some correction terms. Our result is better than before and is of order1/nin the casep1=p2=⋯=pn.


1998 ◽  
Vol 35 (3) ◽  
pp. 589-599
Author(s):  
William L. Cooper

Given a sequence of random variables (rewards), the Haviv–Puterman differential equation relates the expected infinite-horizon λ-discounted reward and the expected total reward up to a random time that is determined by an independent negative binomial random variable with parameters 2 and λ. This paper provides an interpretation of this proven, but previously unexplained, result. Furthermore, the interpretation is formalized into a new proof, which then yields new results for the general case where the rewards are accumulated up to a time determined by an independent negative binomial random variable with parameters k and λ.


2020 ◽  
Vol 15 (3) ◽  
pp. 2371-2385
Author(s):  
Gane Samb Lo ◽  
Harouna Sangaré ◽  
Cherif Mamadou Moctar Traoré ◽  
Mohammad Ahsanullah

Asymptotic theories on record values and times, including central limit theorems, make sense only if the sequence of records values (and of record times) is infinite. If not, such theories could not even be an option. In this paper, we give necessary and/or sufficient conditions for the finiteness of the number of records. We prove, for example for iid real valued random variable, that strong upper record values are finite if and only if the upper endpoint is finite and is an atom of the common cumulative distribution function. The only asymptotic study left to us concerns the infinite sequence of hitting times of that upper endpoints, which by the way, is the sequence of weak record times. The asymptotic characterizations are made using negative binomial random variables and the dimensional multinomial random variables. Asymptotic comparison in terms of consistency bounds and confidence intervals on the different sequences of hitting times are provided. The example of a binomial random variable is given.


Author(s):  
Huiming Zhang ◽  
Xiaoxu Wu

AbstractThis note aims at presenting several new theoretical results for the compound Poisson point process, which follows the work of Zhang et al. (Insur. Math. Econ. 59:325–336, 2014). The first part provides a new characterization for a discrete compound Poisson point process (proposed by Aczél (Acta Math. Hung. 3(3):219–224, 1952)), it extends the characterization of the Poisson point process given by Copeland and Regan (Ann. Math. 37:357–362, 1936). Next, we derive some concentration inequalities for discrete compound Poisson point process (negative binomial random variable with unknown dispersion is a significant example). These concentration inequalities are potentially useful in count data regression. We give an application in the weighted Lasso penalized negative binomial regressions whose KKT conditions of penalized likelihood hold with high probability and then we derive non-asymptotic oracle inequalities for a weighted Lasso estimator.


1998 ◽  
Vol 35 (03) ◽  
pp. 589-599
Author(s):  
William L. Cooper

Given a sequence of random variables (rewards), the Haviv–Puterman differential equation relates the expected infinite-horizon λ-discounted reward and the expected total reward up to a random time that is determined by an independent negative binomial random variable with parameters 2 and λ. This paper provides an interpretation of this proven, but previously unexplained, result. Furthermore, the interpretation is formalized into a new proof, which then yields new results for the general case where the rewards are accumulated up to a time determined by an independent negative binomial random variable with parameters k and λ.



2018 ◽  
Vol 38 (1) ◽  
pp. 77-101
Author(s):  
Palaniappan Vellai Samy ◽  
Aditya Maheshwari

In this paper, we define a fractional negative binomial process FNBP by replacing the Poisson process by a fractional Poisson process FPP in the gamma subordinated form of the negative binomial process. It is shown that the one-dimensional distributions of the FPP and the FNBP are not infinitely divisible. Also, the space fractional Pólya process SFPP is defined by replacing the rate parameter λ by a gamma random variable in the definition of the space fractional Poisson process. The properties of the FNBP and the SFPP and the connections to PDEs governing the density of the FNBP and the SFPP are also investigated.


2021 ◽  
Vol 23 ◽  
Author(s):  
Peyton Cook

This article is intended to help students understand the concept of a coverage probability involving confidence intervals. Mathematica is used as a language for describing an algorithm to compute the coverage probability for a simple confidence interval based on the binomial distribution. Then, higher-level functions are used to compute probabilities of expressions in order to obtain coverage probabilities. Several examples are presented: two confidence intervals for a population proportion based on the binomial distribution, an asymptotic confidence interval for the mean of the Poisson distribution, and an asymptotic confidence interval for a population proportion based on the negative binomial distribution.


Vestnik NSUEM ◽  
2021 ◽  
pp. 146-155
Author(s):  
A. V. Ganicheva ◽  
A. V. Ganichev

The problem of reducing the number of observations for constructing a confidence interval of variance with a given degree of accuracy and reliability is considered. The new method of constructing an interval estimate of variance developed in the article is formulated by three statements and justified by four proven theorems. Formulas for calculating the required number of observations depending on the accuracy and reliability of the estimate are derived. The results of the calculations are presented in the table and shown in the diagram. The universality and effectiveness of this method is shown. The universality of the method lies in the fact that it is applicable to any laws of probability distribution, and not only for the normal law. The effectiveness of the developed method is justified by comparing its performance with other known methods.


Sign in / Sign up

Export Citation Format

Share Document