Preparation of multi-walled carbon nanotubes/high density polyethylene composites with enhanced properties by using a master batch method

2021 ◽  
pp. 096739112110178
Author(s):  
Fu-An He ◽  
Li-Ming Zhang

Multi-walled carbon nanotubes (MWCNTs)/high density polyethylene (HDPE) composites were prepared by a masterbatch method (mPEC) in which a commercial HDPE was blended with a MWCNTs/HDPE masterbatch obtained from in situ polymerization. Owing to the interfacial interaction, a 13 cm−1 up-shift of the G band for the MWCNTs was observed in the Raman spectrum of the MWCNTs/HDPE masterbatch and the homogeneous distribution of MWCNTs in the mPEC was realized. Compared to the pure HDPE and the MWCNTs/HDPE composites prepared by a direct melt-blending method (dPEC), the mPEC had better electrical, mechanical and rheological properties, suggesting that the in situ polymerized HDPE covering on the MWCNTs surfaces played an important role in the reinforcing effects as an interfacial modifier. The tensile yield strength and the Young’s modulus of the mPEC containing 3 wt% MWCNTs (mPEC3), and the flexural strength and the flexural modulus of the mPEC containing 1 wt% MWCNTs were improved by 38.3%, 41.7%, 24.4%, and 42.9%, respectively, compared to those of the pure HDPE. For, the electrical resistivity of mPEC3 was decreased by about three orders of magnitude relative to that of the pure HDPE. The | η*|, G′, and G″ of the mPEC were obviously higher than those of pure HDPE. Moreover, the polyethylene-modified MWCNTs obtained from in situ polymerization could facilitate the crystallization of the HDPE macromolecular chains more effectively compared to the unmodified MWCNTs.

2007 ◽  
Vol 40 (17) ◽  
pp. 6268-6276 ◽  
Author(s):  
M. Trujillo ◽  
M. L. Arnal ◽  
A. J. Müller ◽  
E. Laredo ◽  
St. Bredeau ◽  
...  

2009 ◽  
Vol 58 (7) ◽  
pp. 832-837 ◽  
Author(s):  
Ying Du ◽  
Nantao Hu ◽  
Hongwei Zhou ◽  
Peng Li ◽  
Peng Zhang ◽  
...  

Polymer ◽  
2005 ◽  
Vol 46 (14) ◽  
pp. 5125-5132 ◽  
Author(s):  
Chungui Zhao ◽  
Guanjun Hu ◽  
Ryan Justice ◽  
Dale W. Schaefer ◽  
Shimin Zhang ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 2063-2066
Author(s):  
Xian Kai Jiang ◽  
Ji You Gu ◽  
Yan Hua Zhang

Mechanical properties of polyurethane coating were improved by multi-walled carbon nanotubes (MWNTs) via in situ polymerization and blending polymerization. Fourier transform infrared spectroscopy (FT-IR) measurement was employed to assess the influence of acid treatment on MWNTs. Mechanical properties analysis of polyurethane coatings including tensile strength, elastic modulus, hardness, flexibility, impact resistance were employed to assess the improvement of mechanical properties of polyurethane coating by MWNTs. The results indicated that MWNTs could improve the mechanical properties of polyurethane coatings, and the improvement of polyurethane coatings by MWNTs via in situ polymerization were better than via blending polymerization, and the improvement of polyurethane coatings by acid-treated MWNTs were better than by raw MWNTs.


Author(s):  
A.A. Zdanovich ◽  
◽  
M.A. Matsko ◽  
A.V. Melezhik ◽  
A.G. Tkachev ◽  
...  

The data on the preparation of composite materials containing polyethylene and multi-walled carbon nanotubes (MWCNTs) of the Taunit brand are presented. To obtain these composites by in situ polymerization, a catalytic system formed by the interaction of an organomagnesium compound and TiCl4 on the surface of nanotubes was used. The catalyst fixed on the MWCNT surface has a high activity in ethylene polymerization and allows to obtain a polymer with different molecular weight. The data on the formation of a polymer on the MWCNT surface and the morphology of composites formed on various Taunit samples are presented.


Sign in / Sign up

Export Citation Format

Share Document